1. Circle the letter of the following assertions which are \textit{always} true.

 (a) If $f(x)$ is a function such that $f(3) > 0$ and $f(7) < 0$, then there exists $3 < c < 7$ such that $f(c) = 0$.

 (b) If $f(x)$ is continuous at $x = a$, then $f(x)$ is differentiable at $x = a$.

 (c) If $f''(5) = 0$, then $f(x)$ has an inflection point at $x = 5$.

 (d) If $f'(9) = 0$ and $f''(9) > 0$, then $f(x)$ has a local minimum at $x = 9$.

 (e) If y is twice continuously differentiable, then $D^2 y = (Dy)^2$.

 (f) If $f(x)$ is continuous and even on $[-3, 3]$, then $\int_{-3}^{3} f(x) dx = 0$.

 (g) If $f(x)$ has a local maximum at $x = 2$, then $f(x) \leq f(2)$ for all $0 \leq x \leq 4$.

 (h) If $f(x)$ is differentiable on $[3, 6]$, $f(3) = 2$ and $f(6) = 8$, then there exists $3 < c < 6$ such that $f'(c) = 2$.

 (i) If $f(x)$ is continuous on $[-4, 9]$, $\int_{-4}^{9} f(t) dt = 5$, and $\int_{0}^{9} f(t) dt = 8$, then $\int_{0}^{-4} f(t) dt = 3$.

 (j) If $f(x)$ is continuous on $[1, 3]$, and $\int_{1}^{3} f(x) dx$ represents the area bounded by $y = f(x)$, $y = 0$, $x = 1$ and $x = 3$, then $f(x) \geq 0$ on $[1, 3]$.
2. Consider \(L = \lim_{h \to 0} \frac{(\pi + h)^2 \sin(\pi + h)}{h} \)

(a) Find a function \(f(x) \) and a point \(a \) so that \(L = f'(a) \).

(b) Use derivatives to find the value of \(L \).

3. If \(f(x) \) is differentiable, find the following in terms of \(f' \) :

(a) \(\frac{d}{dx} \frac{f(x)}{1 + \cos^2 x} \)

(b) \(\frac{d}{dx} f(f(x)) \)

4. A particle starts at \(x = 0 \), and moves along the \(x \)-axis so that its velocity is \(v(t) = 3 - \sqrt{t} \) m/s for \(t \geq 0 \).

(a) Find its position at a general time \(t \).

(b) Find the largest \(x \)-coordinate that the particle reaches.
5. Consider \(\lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{\frac{2i}{n}} \left(3 + \frac{4i}{n}\right) \cdot \frac{2}{n} \).

(a) Write this limit as an integral, with a specified integrand and limits of integration.

(b) Evaluate this integral.

6. Let \(f(x) = \begin{cases} x + 2 & \text{if } x < 0 \\ \sqrt{4 - x^2} & \text{if } 0 \leq x \leq 2 \end{cases} \)

Use geometry to evaluate \(\int_{-3}^{2} f(x) \, dx \)

7. (a) State the Fundamental Theorem of Calculus in the derivative form.

(b) If \(g(x) = \int_{3}^{x} \frac{1}{4 - t^2} \, dt \) for \(t > 2 \), find \(g'(x) \).
(c) Find \(\frac{d}{dx} \int_x^{x^2} \sin(t^2)dt \)

8. (a) State the Fundamental Theorem of Calculus in the antiderivative form.

(b) Evaluate \(\int_1^4 \frac{1}{\sqrt{x}} + x^3 dx \)

(c) Evaluate \(\int_1^3 \left(\frac{x^2 + 1}{x} \right)^2 dx \)

9. Evaluate \(\int_0^{(\pi/6)^{1/4}} x^3 \sec^2(x^4 + \frac{\pi}{6}) dx \)
10. Evaluate $\int x\sqrt{1-x} \, dx$

11. Find the finite area bounded by $x \geq 0, y = x$ and $y = \sin \left(\frac{\pi}{2} x \right)$.

12. The region bounded by $y = 0, y = \sqrt{1-x^4}, x = 0$ and $x = 1$ is rotated about the x-axis. Find the volume of the resulting solid.