INSTRUCTIONS: Show all of your work, and give exact answers.

1. Evaluate the following limits exactly:

 (a) \(\lim_{x \to 3} \left(\frac{4x - 7}{x^2 + 1} \right)^3 \)

 (b) \(\lim_{h \to 0} \frac{\frac{1}{x + h} - \frac{1}{x}}{h} \)

 (c) \(\lim_{x \to 2^-} (x - |x|) \) (Note: \(|t| \) is the greatest integer function).

 (d) \(\lim_{x \to 1^-} \frac{3x^2 + 2x - 5}{(x - 1)^2} \)

 (e) \(\lim_{x \to -\infty} \left(\frac{\sqrt{5x^2 + 3x - 2}}{4x + 3} \right)^3 \)

 (f) \(\lim_{x \to -3^-} \frac{|x + 3|}{x + 3} \)
2. Let \(g(x) = \begin{cases}
2x^2 + 5 & \text{if } x < 1 \\
 k & \text{if } x = 1 \\
9 - 2x & \text{if } 1 < x < 2 \\
5 & \text{if } x = 2 \\
\frac{24}{2x+1} & \text{if } 2 < x
\end{cases} \)

(a) Find the value of \(k \) (if possible) which makes \(g(x) \) continuous at \(x = 1 \).

(b) Determine if \(g(x) \) is left-continuous, right-continuous, or continuous at \(x = 2 \). If it is not continuous, determine the type of discontinuity.

3. \textit{Prove} that the equation \(e^x = 4 - x \) has at least one solution in the interval \([0, 2]\).
4. The position (in meters) of an object after \(t \) seconds is given by \(s(t) = t^2 - 10t \).

(a) Use the limit definition to find the \emph{instantaneous velocity} \(v(t) \).

(b) Compare the instantaneous velocity at \(t = 3 \) to the \emph{average} velocity from \(t = 2 \) to \(t = 4 \).

5. Suppose that \(h'(x) = 3x^4 + 4e^{x-1} \) and \(h(1) = 5 \).

Write the \emph{equation} of the tangent line to \(y = h(x) \) at the point \(x = 1 \).
6. Use the graph of \(f(x) \) above to evaluate the limits:

\[
\begin{align*}
(a) \quad \lim_{x \to 2^-} f(x) &= \quad (b) \quad \lim_{x \to 2^+} f(x) &= \quad (c) \quad \lim_{x \to 2} f(x) = \\
(d) \quad \lim_{x \to 4^-} f(x) &= \quad (e) \quad \lim_{x \to 4^+} f(x) &= \quad (f) \quad \lim_{x \to 4} f(x) &=
\end{align*}
\]

7. Let \(f'(a) = \lim_{h \to 0} \frac{(2 + h)^2 e^2 \cdot e^h - 4e^2}{h} \)

Find \(f(x) \) and the value of \(a \).