Here is a review of the integration and trigonometric skills you need in this course.

Integration by substitution

\[\int e^{2x} \, dx = \frac{1}{2} e^{2x} + c \quad u = 2x, \, du = 2 \, dx \]

\[\int 2x^3 \sqrt{1 + x^2} \, dx = \int (u - 1)^{1/2} \, du = \int u^{3/2} - u^{1/2} \, du \quad u = 1 + x^2, \, du = 2x \, dx, \, x^2 = u - 1 \]

Integration by parts

There are 3 classes of integrals that can be evaluated using IBP:

A) \(\int (\text{polynomial})(\sin \text{ or } \cos) \, dx \), \(\int (\text{polynomial})(\exp) \, dx \). Let \(u = \text{polynomial} \) to kill off the polynomial one degree at a time.

B) \(\int (\text{polynomial})(\logarithm) \, dx \), \(\int \arctrig \, dx \). Let \(u = \logarithm \) or \(u = \arctrig \).

C) \(\int (\exp)(\sin \text{ or } \cos) \, dx \). IBP twice, using \(u = \arctrig \) both times, or \(u = \exp \) both times. Called FOLDING.

Basic Trigonometric Skills

A) Definitions of the 6 trig functions in terms of right triangles and in terms of sines and cosines.

B) Pythagorean identities, 3 flavors. \(\sin^2 x + \cos^2 x = 1 \), \(1 + \cot^2 x = \csc^2 x \), \(\tan^2 x + 1 = \sec^2 x \).

C) Half angle identities. \(\sin^2 \frac{x}{2} = \frac{1}{2} (1 - \cos x) \), \(\cos^2 \frac{x}{2} = \frac{1}{2} (1 + \cos x) \).

D) Double angle identities. \(2 \sin x \cos x = \sin 2x \), \(\cos 2x - \sin 2x = \cos (2x) \), \(2 \cos^2 x - 1 = \cos (2x) \), \(1 - 2 \sin^2 x = \cos (2x) \).

E) Sum and difference identities. \(\sin(x \pm y) = \sin x \cos y \pm \sin y \cos x \), \(\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y \).

F) Product identities. \(\sin A \cos B = \frac{1}{2}(\sin(A - B) + \sin(A + B)) \), \(\sin A \sin B = \frac{1}{2}(\cos(A - B) - \cos(A + B)) \), \(\cos A \cos B = \frac{1}{2}(\cos(A - B) + \cos(A + B)) \).

G) Elementary antiderivatives. \(\int \sin x \, dx = - \cos x + c \), \(\int \cos x \, dx = \sin x + c \), \(\int \sec^2 x \, dx = \tan x + c \), \(\int \csc^2 x \, dx = - \cot x + c \), \(\int \sec x \tan x \, dx = \sec x + c \), \(\int \sec x \, dx = \int \sec x \frac{\sec x + \tan x}{\sec x + \tan x} \, dx = \int \frac{1}{u} \, du = \ln |\sec x + \tan x| + c \).

Trigonometric Integrals

A) \(\int \sin^n x \cos^m x \, dx \). If \(n \) or \(m \) is odd, pull off the odd power of sin or cos to use in \(du \), let \(u \) equal the other trig function, and apply Pythagorean identities if needed. If both \(n \) and \(m \) are odd, you can let \(u \) equal \(\sin x \) or \(\cos x \). If \(n \) and \(m \) are both even, apply half angle identities and Pythagorean identities.
Examples:

\[
\int \cos^3 x \, dx = \int (1 - \sin^2 x)(\cos x \, dx) = \int (1 - u^2) \, du
\]

\[
\int \sin^3 x \cos^3 x \, dx = \int (\sin^3 x)(1 - \sin^2 x)(\cos x \, dx) = \int (u^3)(1 - u^2)(\, du)
\]

\[
\int \sin^2 x \, dx = \int \frac{1}{2}(1 - \cos(2x)) \, dx
\]

B) \(\int \tan^m x \sec^n x \, dx \). If \(n \) is even, pull off a \(\sec^2 x \) to use in \(du \), let \(u = \tan x \) and apply Pythagorean identity if needed. If \(m \) is odd, pull off a \(\sec x \tan x \) to use in \(du \), let \(u = \sec x \), apply Pythagorean identity if needed. If both \(n \) is even and \(m \) is odd, you can do either of the above. If \(n \) is odd and \(m \) is even, God help you. Use Pythagorean identities to reduce to nothing but powers of \(\sec x \). Integrals of \(\sec x \) and \(\sec^3 x \) are standard, and can be looked up in your old Calculus text (you didn’t sell it back to the Bookstore, did you?). Higher odd powers of \(\sec x \) require careful use of IBP. Even powers can be handled by the second sentence in this paragraph.

Examples:

\[
\int \tan^2 x \sec^4 x \, dx = \int \tan^2 x(\tan^2 x - 1)(\sec^2 x \, dx) = \int u^2(u^2 - 1) \, du
\]

\[
\int \tan x \sec^{20} x \, dx = \int \sec^{19} x(\sec x \tan x \, dx) = \int u^{19} \, du
\]

\[
\int \tan^2 x \sec x \, dx = \int (\sec^2 x - 1) \sec x \, dx = \int \sec^3 x - \sec x \, dx
\]

Trigonometric Substitution

Look for expressions of the form \(\sqrt{a^2 - x^2} \), \(\sqrt{x^2 - a^2} \), or \(\sqrt{x^2 + a^2} \), or one of these to a higher power (for example, \((x^2 - 4)^2\) is the square root raised to the fourth power). If there is a minus under the square root, the positive term is the square of the hypotenuse and the negative term is the square of one of the legs; the square root is the other leg. If there is a plus under the square root, then the square root is the hypotenuse, and the terms inside are the squares of the legs. Use the triangle to make a substitution, which converts the integral to a trig integral (see above).

Examples:

1) \(\int \frac{1}{x^2\sqrt{16 - x^2}} \, dx \). The hypotenuse is 4 and the sides are \(x \) and \(\sqrt{16 - x^2} \). Let \(x = 4 \sin \theta \), so \(dx = 4 \cos \theta \). The integral becomes \(\int \frac{1}{16 \sin^2 \theta \sqrt{16 - 16 \sin^2 \theta}} \cdot 4 \cos \theta \, d\theta = \frac{1}{16} \int 1 \sin^2 \theta \, d\theta = \frac{1}{16} \cot \theta + c = \frac{1}{16} \frac{\sqrt{16 - x^2}}{x} + c \).

2) \(\int \frac{x^3}{\sqrt{9 + x^2}} \, dx \). The hypotenuse is \(\sqrt{9 + x^2} \) and the legs are \(x \) and 3. Let \(x = 3 \tan \theta \), so \(dx = 3 \sec^2 \theta \, d\theta \). The integral becomes \(\int \frac{27 \tan^3 \theta}{3 \sec \theta} \cdot 3 \sec^2 \theta \, d\theta = 27 \int \frac{\sin^3 \theta}{\cos^4 \theta} \, d\theta \). Write the numerator as \(\sin^2 \theta \sin \theta \, d\theta = (1 - u^2) \, du \) for \(u = \cos \theta \). The integral becomes \(27 \int (1 - u^2)u^{-4} \, (-du) = 27 \left(-\frac{1}{u} + \frac{1}{3u^3} \right) = \left(-9\sqrt{9 + x^2} + \frac{1}{3}(9 + x^2)^{3/2} \right) \). Note that \(u = \cos \theta = 3/\sqrt{9 + x^2} \). Oh, and don’t forget the constant of integration.