- **Analytic functions**

 A function f that has a power series representation

 \[f(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^n, \]

 with a radius of convergence $\rho > 0$, is said to be **analytic** at x_0.

- **The Ratio Test**

 (i) If $\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = L < 1$, then the series $\sum_{n=0}^{\infty} A_n$ converges absolutely. \(^1\)

 (ii) If $\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = L > 1$ (including $L = \infty$), the series $\sum_{n=0}^{\infty} A_n$ diverges.

 (iii) If $\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = 1$, no conclusion.

- **Ordinary and singular points**

 Consider the differential equation

 \[P(x)y''(x) + Q(x)y'(x) + R(x)y(x) = 0, \]

 and divide through by $P(x)$. If $P(x_0) \neq 0$ and both $Q(x)/P(x)$ and $R(x)/P(x)$ are analytic at x_0, then x_0 is said to be an **ordinary point** of the differential equation. Otherwise x_0 is said to be a **singular point**.

- **Regular and irregular singular points**

 If x_0 is a singular point of the differential equation

 \[P(x)y''(x) + Q(x)y'(x) + R(x)y(x) = 0, \]

 and $(x - x_0)Q(x)/P(x)$ and $(x - x_0)^2R(x)/P(x)$ are analytic at x_0, then x_0 is said to be a **regular singular point** of the differential equation.

 If x_0 is a singular point, but $(x - x_0)Q(x)/P(x)$ and $(x - x_0)^2R(x)/P(x)$ are not analytic at x_0, then x_0 is said to be an **irregular singular point**.

\(^1\) Absolute convergence means $\sum_{n=0}^{\infty} |A_n|$ converges (and consequently $\sum_{n=0}^{\infty} A_n$ converges).
Differentiating a convergent power series

If \(\sum_{n=0}^{\infty} a_n (x - x_0)^n \) converges to \(f(x) \) for \(|x - x_0| < \rho, \rho > 0 \), then \(f \) is continuous and has derivatives of all orders for \(|x - x_0| < \rho \). Further, \(f', f'', \ldots \) can be computed by differentiating the series termwise, and each of the series converges absolutely for \(|x - x_0| < \rho \):

\[
f'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1}, \quad f''(x) = \sum_{n=0}^{\infty} n(n-1) a_n (x - x_0)^{n-2}, \ldots
\]

Adding convergent power series

If \(\sum_{n=0}^{\infty} a_n (x - x_0)^n \) and \(\sum_{n=0}^{\infty} b_n (x - x_0)^n \) converge to \(f(x) \) and \(g(x) \), respectively, for \(|x - x_0| < \rho, \rho > 0 \), then the series can be added and subtracted termwise for \(x \) in the interval of convergence \(|x - x_0| < \rho \):

\[
f(x) \pm g(x) = \sum_{n=0}^{\infty} (a_n \pm b_n) (x - x_0)^n.
\]

That is, the series can be added just like polynomials. Similarly, the series can be multiplied and divided like polynomials.

EQUATING CONVERGENT POWER SERIES

If \(\sum_{n=0}^{\infty} a_n (x - x_0)^n \) and \(\sum_{n=0}^{\infty} b_n (x - x_0)^n \) converge for \(|x - x_0| < \rho, \rho > 0 \), and if \(\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} b_n (x - x_0)^n \) for each \(x \) in the interval of convergence \(|x - x_0| < \rho \), then we can equate like terms: \(a_n = b_n \) for \(n = 0, 1, 2, \ldots \).

In particular, if \(\sum_{n=0}^{\infty} a_n (x - x_0)^n = 0 \) for each \(x \), then \(a_n = 0 \) for \(n = 0, 1, 2, \ldots \).

Rearrangements

If \(\sum a_n \) is an absolutely convergent series with sum \(s \), then any rearrangement of terms of \(\sum a_n \) has the same sum \(s \).

If \(\sum a_n \) is a conditionally convergent (convergent but not absolutely convergent) series with sum \(s \) and if \(r \) is ANY real number, then there is a rearrangement of the terms of \(\sum a_n \) that has the sum \(r \).