Instructions: (10 points) Use Newton’s Method to find the solution to the given equation. Follow the step-by-step outline that accompanies this assignment. Put your results into a table similar to the one attached to these problems. Do enough iterations until \(f(x_n) = 0.000000 \), again, see the accompanying example. When drawing a table, use a straight edge. Be neat.

Note: Show 6 decimal places for the numbers entered into your tables.

1. Consider the equation: \(x^4 + x = 3 \). There are two solutions \((r_1 \text{ and } r_2) \) to this equation: \(-2 \leq r_1 \leq -1\) and \(1 \leq r_2 \leq 2 \).
 (a) Find \(r_1 \) using an initial guess of \(x_1 = -2 \).
 (b) Find \(r_2 \) using an initial guess of \(x_1 = 1 \).
Problem: Let f be a differentiable function, and consider the equation $f(x) = 0$. We want to solve this equation numerically for x.

Solution: Proceed as follows:

Step 1: Compute $f'(x)$.

Step 2: Construct Newton’s Iteration Formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, 3, \ldots$$ (1)

Step 3: Construct a table of estimates. Choose an initial estimate x_1, and use your Newton Iteration Formula, equation (1), to compute successively more accurate estimates of the unknown value.

1. Make an initial guess of x_1. For $n = 1$, the equation (1) becomes $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$. The value of the right-hand side depends on x_1, which is known, so x_2 can be computed. Thus, x_2 is now known.

2. For $n = 2$, the equation (1) becomes $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$. The value of the right-hand side depends on x_2, which is known, so x_3 can be computed. Thus, x_3 is now known.

3. And so on for $n = 3, 4, 5, \ldots$

The example below illustrates a complete solution, and proper tabulation of the results.

Example 1 Find the positive root of the equation $x^2 = 2$.

Solution: The function is $f(x) = x^2 - 2$.

Step 1: Compute derivative, $f'(x) = 2x$.

Step 2: Construct the iteration formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - 2}{2x_n} = \frac{x_n^2 + 2}{2x_n}$$

Thus, for this problem, the iteration formula is

$$x_{n+1} = \frac{x_n^2 + 2}{2x_n}$$

This, together with an initial guess of $x_1 = 1.5$ yields the following calculations.

Step 3: Construct a table of estimates.

Initial guess of $x_1 = 1.5$ and iteration formula of $x_{n+1} = \frac{x_n^2 + 2}{2x_n}$.

<table>
<thead>
<tr>
<th>Newton’s Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) = x^2 - 2$, $x_1 = 1.5$</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Thus, the positive root to the equation $x^2 - 2 = 0$ is $x \approx 1.4142135$ or, $\sqrt{2} \approx 1.4142135$.