§3.2, pages 97–99.

Problem 4. Let \(f : [a, b] \to \mathbb{R} \) be continuous at \(c \in [a, b] \) and suppose \(f(c) > 0 \). Prove that there is a number \(m > 0 \) and an interval \([u, v] \subseteq [a, b] \) such that \(c \in [u, v] \) and \(f(x) \geq m, \forall x \in [u, v] \)

Proof: This is just a simple application of the definition of continuity at \(c \). Let \(\epsilon = f(c)/2 > 0 \), there since \(f \) is continuous at \(c \), there is a number \(\delta_1 > 0 \) such that
\[
x \in [a, b] \text{ and } |x - c| < \delta_1 \implies |f(x) - f(c)| < \epsilon
\]
Define \(\delta = \delta_1/2 \), then
\[
x \in [a, b] \text{ and } |x - c| \leq \delta \implies |f(x) - f(c)| < \epsilon \quad (1)
\]
Define \(m = f(c)/2 > 0 \), then
\[
|f(x) - f(c)| < \epsilon \implies f(x) \geq f(c)/2 = m \quad (2)
\]
To finish off this argument, we need to choose \(u \) and \(v \).

After much thought and taking into account the possibility that the endpoints of the \(\delta \) interval around \(c \) could extend beyond the endpoints of the interval \([a, b] \), and that \(c \) could be either \(a \) or \(b \), we choose \(u = \max\{c - \delta, a\} \) and \(v = \min\{c + \delta, b\} \).

Thus,
\[
x \in [u, v] \implies x \in [a, b] \text{ and } |x - c| \leq \delta
\]
\[
\implies |f(x) - f(c)| < \epsilon \quad \text{from (1)}
\]
\[
\implies f(x) \geq f(c)/2 = m \quad \text{from (2)}
\]
\[
\implies f(x) \geq m
\]
This completes the proof, with all of its technical requirements. \(\square\)

Problem 7. (*Hint*: First argue that for each irrational number, \(x \), there exists a sequence \(\{r_n\} \) of rational numbers converging to \(x \).)

Proof: Suppose \(f \) is continuous on \([a, b] \) and that \(f(x) = 0 \) for all \(x \in \mathbb{Q} \cap [a, b] \). We need to prove that \(f(x) = 0 \) for all \(x \in [a, b] \).

Let \(x \in [a, b] \). As was proven in the solutions to Assignment #7, there exists a sequence \(\{r_n\} \) of rational numbers (in \([a, b]\)) such that \(r_n \to x \). Since \(f \) is continuous at \(x \) we have
\[
\lim_{n \to \infty} f(r_n) = f(x) \quad (1)
\]
But, for each \(n \in \mathbb{N} \), \(r_n \in \mathbb{Q} \) so \(f(r_n) = 0 \), from the given properties of \(f \). But \(f(r_n) = 0, \forall n \in \mathbb{N} \) implies
\[
\lim_{n \to \infty} f(r_n) = 0
\]
But the limit of a sequence is unique (Theorem 2.4), combining the result (2) with
(1) yields \(f(x) = 0 \), which is what we wanted to prove, and completes the proof. \(\square \)

Alternate Solution: Let \(c \in [a, b] \) and let \(\epsilon > 0 \) be any number, then there is a \(\delta > 0 \)
such that \(x \in (c - \delta, c + \delta) \) implies \(|f(x) - f(c)| < \epsilon \). By Theorem 1.18, we can
choose a rational number \(r \in (c - \delta, c + \delta) \), then \(|f(c)| = |f(r) - f(c)| < \epsilon \).

We have shown that if \(c \in \mathbb{R} \), then for every \(\epsilon > 0 \), \(|f(c)| < \epsilon \). We conclude that
\(f(c) = 0 \). \(\square \)

Problem 11(a). Suppose \(f \) is continuous on \(I \), prove \(|f| \) is continuous on \(I \).

Proof: Let \(c \) be any element of \(I \), prove \(|f| \) is continuous on \(c \). Let \(\epsilon > 0 \) be given, \(f \)
is continuous at \(c \) implies there is a \(\delta > 0 \) such that
\[
x \in I \text{ and } |x - c| < \delta \implies |f(x) - f(c)| < \epsilon
\]
By the infamous **Reverse Triangle Inequality**, \(| |f(x)| - |f(c)| | \leq |f(x) - f(c)| \), so we have
\[
x \in I \text{ and } |x - c| < \delta \implies | |f(x)| - |f(c)| | \leq |f(x) - f(c)| < \epsilon
\implies | |f(x)| - |f(c)| | < \epsilon
\]
That is all. Over and out. \(\square \)

Alternate Solution: It is clear that the function \(g(x) = |x| \) is continuous on \(\mathbb{R} \), and
that \(f \) is continuous on \(I \). Since \(f(I) \subseteq \mathbb{R} \), it follows from Theorem 3.13 that \(g \circ f \)
is continuous on \(I \), but \((g \circ f)(x) = |f(x)| \), so we can say that \(g \circ f = |f| \) is continuous
on \(I \). \(\square \)

Problem 12. This one is simple.

Solution: Let \(f \) and \(g \) be continuous on \(I \). Then by Corollary 3.12, the functions
\(f + g \) and \(f - g \) are continuous on \(I \). From the previous problem, since \(f - g \) is
continuous on \(I \), so is \(|f - g| \). Finally, by Corollary 3.12 we have
\[
f \lor g = \frac{(f + g) + |f - g|}{2}
\]
is continuous on \(I \) and
\[
f \land g = \frac{(f + g) - |f - g|}{2}
\]
is continuous on \(I \). \(\square \)

Problem 28. One such example is \(f(x) = \sin(1/(1 - x^2)) \) is one such example. \(\square \)