Problem 27. Let A be a nonempty bounded set. The maximum of A is a number $x \in A$ such that $a \leq x$, $\forall x \in A$. Prove that a nonempty bounded set has a maximum if and only if it contains its supremum.

Proof: (\implies) Suppose A be a nonempty bounded set that has a maximum. Let $M = \max A$. Then, from the definition of maximum, M is an upper bound of A. Now let $x < M$, then $x < M$, and $M \in A$. This shows that x is not an upper bound of A. Hence, $M = \sup S$.

(\impliedby) Now let $M = \sup A$ such that $M \in A$. Since M is an upper bound of A if follows that $x \leq M$, $\forall x \in A$. This fact, combined with the assumption that $M \in A$ shows that M satisfies the definition of a maximum of A. □

Problem 11. Let $\{x_n\}$ be a sequence of real numbers.

(a) Suppose $\{x_n\}$ converges to L. Prove that $\{|x_n|\}$ converges to $|L|$.

Proof: The proof of this assertion follows from the Reverse Triangle Inequality:

$$||x_n| - |L|| \leq |x_n - L|$$

Details left to the reader. □

(b) Suppose $\{|x_n|\}$ converges. Show that $\{x_n\}$ may not converge.

Solution: Consider the sequence $x_n = (-1)^n$. Since $|x_n| = 1$, for all $x \in \mathbb{N}$, if follows that $\{|x_n|\}$ converges (to 1). But, as was proven in class, $\{x_n\} = \{(-1)^n\}$ does not converge. □

(c) Suppose $\{|x_n|\}$ converges to 0. Prove that $\{x_n\}$ converges to 0.

Proof: Suppose $\{|x_n|\}$ converges to 0. This means that $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$||x_n| - 0| < \epsilon, \quad \forall n \geq N \quad (1)$$

But line (1) is equivalent to

$$|x_n| < \epsilon, \quad \forall n \geq N \quad (2)$$

since $||x_n|| = |x_n|$. This completes the proof, since (2) is the definition of the sequence $\{x_n\}$ converging to 0. □

Additional Solution Notes: Jared Hicks proved this using the Squeezing Theorem: For any $n \in \mathbb{N}$, he observed that $-|x_n| \leq x_n \leq |x_n|$, and $\lim -|x_n| = \lim |x_n| = 0$, Conclude therefore, $\lim x_n = 0$. □
Problem 13. Let \(\{a_n\} \) be a sequence that converges to \(L \) and let \(p \in \mathbb{N} \). Prove that the sequence \(\{a_{n+p}\} \) also converges to \(L \).

Proof: For simplicity and clarity of explanation, we define \(b_n = a_{n+p} \). Let \(\epsilon > 0 \), there exists a number \(N \in \mathbb{N} \) such that

\[
|a_n - L| < \epsilon, \quad \forall n \geq N
\]

(1)

Now, for any \(n \geq N \), we know that \(n + p \geq N \) as well, since \(p \in \mathbb{N} \). It follows that for \(n \geq N \),

\[
|b_n - L| = |a_{n+p} - L| < \epsilon
\]

(2)

But (2) is the definition of \(b_n \to L \). \(\Box \)

Problem 14. Let \(\{b_k\} \) be a sequence of nonnegative number converging to \(b > 0 \). Prove that \(\{\sqrt{b_k}\} \) converges to \(\sqrt{b} \). Prove the same result for the case \(b = 0 \).

Proof: Begin by supposing \(b > 0 \). For \(\epsilon > 0 \), there exists \(N \in \mathbb{R} \) such that

\[
|b_k - b| \leq \epsilon \sqrt{b}, \quad \forall k \geq N
\]

(1)

Thus, for \(n \geq N \),

\[
|\sqrt{b_k} - \sqrt{b}| \leq \frac{|b_k - b|}{\sqrt{b_k + b}} \quad \text{rationalize}
\]

\[
\leq \frac{|b_k - b|}{\sqrt{b}} \quad \text{since} \quad \sqrt{b_k + b} \geq \sqrt{b}
\]

\[
< \frac{\epsilon \sqrt{b}}{\sqrt{b}} \quad \text{from (1)}
\]

\[
= \epsilon
\]

and this completes the proof when \(b > 0 \). \(\Box \)

Now assume \(b = 0 \). In this case, the proof is simple. Let \(\epsilon > 0 \) be given, choose \(N \in \mathbb{N} \) so that

\[
|b_k| < \epsilon^2, \quad \forall n \geq N
\]

Then, it follows,

\[
|\sqrt{b_k}| < \epsilon, \quad \forall n \geq N
\]

C’est tout. \(\Box \)

Problem 17. Suppose \(0 < |y_k - x_k| < r_k, \forall k \in \mathbb{N} \), where \(r_k \to 0 \).

(a) Show that \(\{x_k\} \) and \(\{y_k\} \) need not converge.

Proof: Consider \(x_k = k + 1/(2k) \) and \(y_k = k \). Then \(0 < |x_k - y_k| = 1/(2k) < 1/k = r_k \).

Neither of the sequences converge, since they are unbounded. \(\Box \)

(b) Suppose \(\{x_k\} \) converges to \(L \). Prove that \(\{y_k\} \) converges to \(L \), too.

Proof: The conclusion follows from the following inequality:

\[
|y_k - L| \leq |y_k - x_k| + |x_k - L| < r_k + |x_k - L|
\]

(1)
For $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that
\[r_k < \epsilon / 2, \quad |x_k - L| < \epsilon / 2, \quad \forall k \geq N \quad (2) \]

Now for $k \geq N$ we have from (1) and (2),
\[|y_k - L| \leq |y_k - x_k| + |x_k - L| < r_k + |x_k - L| < \epsilon / 2 + \epsilon / 2 = \epsilon \]
and this completes the proof. \(\square \)

Problem 18. Suppose \(\{a_n\} \) converges to \(a > 0 \). Prove there exists a number \(m > 0 \) and a \(q \in \mathbb{N} \) such that \(a_n > m, \forall n \geq q \).

Proof: Take $\epsilon = a/2 > 0$, then since $a_n \to a$, there exists a number $q \in \mathbb{N}$ such that,
\[|a_n - a| < a / 2, \quad \forall n \geq q \quad (1) \]

Playing around with the inequality in (1), we get
\[a_n > a / 2, \quad \forall n \geq q \quad (2) \]

The proposition is proven, after putting that \(m = a / 2 \). \(\square \)