Discrete. Spring '20 Quiz 5. Name __________________________ Time _______________________

For each proof, fill in the section Assume and Show.

1. Find the terms of the sequence a_n for $n = 1, 2, 3, 4$.

 $a_n = (n \mod 3)^2 - 2^{n-1}$.

 $\begin{array}{c|c}
 n & a_n \\
 \hline
 1 & 1 - 1 = 0 \\
 2 & 4 - 2 = 2 \\
 3 & 0 - 4 = -4 \\
 4 & 1 - 8 = -7 \\
 \end{array}$

2. Use a direct proof to prove: $\forall z \in \mathbb{Z}, z \mod 3 = 2 \Rightarrow z^2 \mod 3 = 1$.

 Assume: $z = 3k + 2$ (remainder 2)

 Show: $z^2 = 3p + 1$ (remainder 1)

 Proof:
 $z^2 = (3k + 2)^2$

 $= 9k^2 + 12k + 4$

 $= 3(3k^2 + 4k + 1) + 1$

3. Use the Principle of Mathematical Induction to prove $\forall n \in \mathbb{Z}, n \geq 2$ implies $5 \mid (7^n - 2^n)$.

 Base case checked: $n = 2$: $7^2 - 2^2 = 49 - 4 = 45 = 9 \times 5$ so $5 \mid (7^2 - 2^2)$

 Induction Assume: $5 \mid (7^k - 2^k)$

 Show: $5 \mid (7^{k+1} - 2^{k+1})$

 Proof:
 $7^{k+1} - 2^{k+1} = 7 \cdot 7^k - 2 \cdot 2^k$

 $= 5 \cdot 7^k + 2 \cdot 7^k - 2 \cdot 2^k$

 $= 5 \cdot 7^k + 2(7^k - 2^k)$

 $= 5(7^k + 2m)$