and \[
|A \cup B \cup C| = |U| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C| - |A \cap B \cap C|
\]
\[= 7 - 6 = 1\]

Example

How many PINs with 5 digits
but:
- no repeated digits
- First digit cannot be 0
- Third digit cannot be 2
- Fifth digit cannot be 5

Idea: let \(U \) be all the 5 digit PINs with no repeated digits
\[|U| = 10^5 = 30,240\]

let \(A \) be PINs with first digit 0.
let \(B \) be PINs with third digit 2.
let \(C \) be PINs with fifth digit 5.

Then legal PINs are \(A \cup B \cup C \).
\[
\begin{align*}
|A| &= |B| = |C| = 3,024 \\
|A \cap B| &= |B \cap C| = |A \cap C| = 336 \\
|A \cap B \cap C| &= 42
\end{align*}
\]
\[|A \cup B \cup C| = 30,240 - 3(3,024) + 3(336) - 42 = 22,134\]

Example: Count 5-digit PINs with no repeated digits, and either start with 7 or end with 8?
let \(A = \) start with 7, \(B = \) end with 8.
\[
|A| + |B| - |A \cap B|
\]
\[= 3,024 + 3,024 - 336 = 5,712\]