Calculus II. Review 1.
Also study quizzes, homework, and examples from notes!

You should be able to do each problem both with and without a calculator. The test will be in two parts, and one part will be taken without a calculator.

For each integration problem, you must show the set-up and all the steps.

1. Find the area between the curves \(y = x^2 - 2x, \ y = x + 4, \) and \(x = 0. \)
2. Find the area between \(y = x^3, \ y = e^x, \ x = -1, \ x = 0. \)
3. Find the area between \(y = x - 1 \) and \(y^2 = 2x + 6. \)
4. Find the area between \(y = \tan x \) and \(y = 2\sin x \) for \(0 \leq x \leq \pi/3. \)
5. Just set up the integral for the area between \(y = \cos x \) and \(y = \sin 2x \) for \(0 \leq x \leq \pi/3. \)
6. Find the volume of the region inside \(x = 0, \ y = 3x + 1, \ x = 2, \ x = y^2 \) rotated around the \(x \)-axis.
7. Find the volume of the region inside \(x = 0, \ x = 1, \ y = 2x, \ y = e^{x^2} \) rotated around the \(y \)-axis.
8. Just set up the integral for the volume of the region inside \(x = 0, \ x = 1, \ y = 2x, \ y = e^{x^2} \) rotated around the \(x \)-axis.
9. Find the volume of the region inside \(y = x^3, \ y = 0, \ x = 1 \) rotated around the line \(x = 2. \)
10. Just set up the integral for the volume of the region bounded by: \(y = 0, \ y = 1, \ y = x, \ y = \sqrt{\ln(x)}; \) rotated around the \(y \)-axis.
11. Find the average value of the function \(f(x) = \frac{x + 7}{\sqrt{x}} \) on the interval \([0, 3].\)
12. Evaluate the definite integral. \(\int_1^2 x^3 \ln(x) \, dx \)
13. Find the indefinite integral. \(\int e^x \sin(2x) \, dx \)
14. Find the indefinite integral. \(\int \sin^7 x \cos^6 x \, dx \)
15. Find the indefinite integral. \(\int \sin^8 x \cos^5 x \, dx \)
16. Find the indefinite integral. \(\int x^2 e^x \, dx \)
17. Find the indefinite integral. \(\int \sqrt{16 - x^2} \, dx \)
18. Find the indefinite integral. \(\int \frac{1}{x^2 \sqrt{x^2 - 16}} \, dx \)