3450:208 Introduction to Discrete Mathematics
Review of Course Topics

1. Logic
 • Propositions
 • Connectives (not, and, or, implies, iff), and precedence
 • Truth Tables
 • Converse, inverse and contrapositive of conditional statements
 • The algebra of propositions: de Morgan’s laws, etc.
 • Valid and invalid arguments

2. Logic Gates and Circuits
 • Logic Gates
 • Input/Output Table
 • Canonical Sum-of-products
 • Karnaugh maps
 • Logic Circuits

3. Binary and Hexadecimal Number Systems
 • Conversion: Decimal to and from Binary
 • Conversion: Decimal to and from Hexadecimal
 • Conversion: Binary to and from Hexadecimal
 • Conversion: n-bit two’s complement
 • Binary and Hexadecimal addition

4. Quantifiers
 • Universal quantifier
 • Existential quantifier
 • Domain
 • Truth set
 • Negations of quantified statements

5. Proofs
 • Proofs of quantified statements
 • Counterexamples for quantified statements
 • Syllogisms and diagrams of validity

6. Integers
 • The division algorithm
 • DIV and MOD
 • The Chinese Remainder Theorem
 • The Euclidean GCD algorithm
 • The floor and ceiling functions

7. Set Theory
 • Definition of set operations
 • Venn diagrams
 • The algebra of sets
 • Power sets

8. Boolean algebras
 • Definition
 • Dual statements
 • Proofs in Boolean algebras
 • Deducing statements in symbolic logic and set theory

9. The Halting Problem

10. Combinatorics (Counting)
 • Counting integers in lists
 • Simple probabilities
 • The Sum rule of counting
 • The Multiplication rule of counting
 • Permutations
 • Combinations

11. Functions
• Definition: functions defined on sets, domain, codomain, range
• Piecewise-defined functions
• Logarithmic functions
• Hashing functions
• One-to-one functions
• Onto functions
• Inverse functions
• The Pigeonhole Principle
• Composition of functions

12. Relations
• Definition of relations, domain, range, inverse
• The directed graph of a relation
• Reflexive, symmetric, transitive, antisymmetric relations
• Equivalence relations, equivalence classes
• Partial orders, total orders

13. Recursion
• Definition of recurrence relation; initial conditions
• Solving problems by recursion
• Solving recurrence relations by iteration

14. Sequences
• Sum and product notation
• Writing sums and products in closed form
• Writing sums and products as recurrence relations
• Finding terms of sequences
• Finding general formulae for sequences
• Evaluating sums and products

15. Mathematical Induction
• Statement of the PMI
• Statement of the PCI
• Using the PMI or PCI to prove sum and product formulae
• Using the PMI or PCI to prove divisibility, inequalities
• Using the PMI or PCI to solve recurrence relations