### Tentative Course Outline

<table>
<thead>
<tr>
<th>Week</th>
<th>Section</th>
</tr>
</thead>
</table>
| 1    | Review of Integration by Substitution  
6.1 Areas between Curves  
6.2 Volumes |
| 2    | 6.3 Volumes by Cylindrical Shells  
6.5 Average Value of a Function  
7.1 Integration by Parts |
| 3    | 7.2 Trigonometric Integrals  
7.3 Trigonometric Substitution |
| 4    | 7.4 Integration of Rational Functions by Partial Fractions  
7.5 Strategy for Integration |
| 5    | 7.7 Approximate Integration  
TEST #1 |
| 6    | 7.8 Improper Integrals  
8.1 Arc Length  
8.2 Area of a Surface of Revolution  
8.3 Centroids |
| 7    | 11.1 Sequences  
11.2 Series |
| 8    | 11.3 The Integral Test and Estimates of Sums  
11.4 The Comparison Tests |
| 9    | TEST #2  
11.5 Alternating Series |
| 10   | 11.6 Absolute Convergence and the Ratio and Root Tests  
11.7 Strategy for Testing Series |
| 11   | 11.8 Power Series  
11.9 Representations of Functions as Power Series |
<table>
<thead>
<tr>
<th>Week</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>11.10 Taylor and Maclaurin Series</td>
</tr>
<tr>
<td></td>
<td>11.11 Applications of Taylor Polynomials</td>
</tr>
<tr>
<td></td>
<td>10.1 Curves defined by Parametric Equations</td>
</tr>
<tr>
<td>13</td>
<td>TEST #3</td>
</tr>
<tr>
<td></td>
<td>10.2 Calculus with Parametric Curves</td>
</tr>
<tr>
<td>14</td>
<td>10.3 Polar Coordinates</td>
</tr>
<tr>
<td></td>
<td>10.4 Areas and Lengths in Polar Coordinates</td>
</tr>
<tr>
<td>15</td>
<td>10.5 Conic Sections</td>
</tr>
<tr>
<td></td>
<td>10.6 Conic Sections in Polar Coordinates</td>
</tr>
<tr>
<td>16</td>
<td>FINAL EXAMINATION</td>
</tr>
</tbody>
</table>

Course Policies

1. **Incompletes.** These will only be given in documentable cases of long-term illness, or similar problems.

2. **Homeworks.** Some homework will be assigned for practice. Said practice is essential, to both learn the material, and to master it. Without this practice, you will likely find that the tests are too long. There may also be extra assignments to be collected and graded. **Neatness, grammar and spelling count on any graded work.**

3. **Quizzes.** There will be regular quizzes given, based on both the recommended and collected homework.

4. **Tests.** If you are going to miss a test (which will be announced approximately one week in advance), you must have a valid, documentable excuse and notify me in advance, or as soon as reasonable afterward. The make-up will be as soon as possible, generally within a week of the original test date.

5. **Grades.** Final grades will be determined from 600 points, broken down as follows: 3 exams @ 100 points each, homework/quizzes @ 150 points, final examination @ 150 points.

   The grade scale will be **no higher than:** A 90-100%, B 80-89%, C 70-79%, D 60-69%, F 0-59%.

6. **Rules.** All University Rules and Regulations are in effect, including those on attendance, discipline, academic honesty and harassment.

7. **Enrollment.** You must be on the class list and properly enrolled in the course to participate, including taking quizzes or tests.

8. **Prerequisites.** The prerequisite for the course is a grade of C- or better in 3450:221 Analytic Geometry - Calculus I (or appropriate placement).

9. **Tutoring.** Students who seek tutors may get help from the Peer Tutoring center in Bierce Library.
10. **Important Dates:**

   January 14, 2013 – First day of classes
   January 21, 2013 – Martin Luther King Day (no class)
   February 19, 2013 – Presidents’ Day (no class)
   March 3, 2013 – Last day to withdraw
   March 25 to March 31, 2013 – Spring Break
   May 3, 2013 – Last day of class
   May 6, 2013 – Final exam 7:55-9:55am (Room to be announced)