1. A class is given the problem of finding a point on the intersection of the surfaces \(f(x) = 0 \) and \(g(x) = 0 \).

 (a) A student suggests minimizing the function \(h(x) = (f(x) - g(x))^2 \)

 Explain the problem with this idea.

 (b) Suggest a modification which will work, assuming that the surfaces do intersect.

2. Consider the objective function \(f(x_1, x_2) = (x_1 + x_2 - 6)^2 - 10 \tan^{-1}((2x_1 + 3x_2 - 5)^8) \)

 (a) Show that \(f \) is bounded below.

 (b) Find any critical points of \(f \).

 (c) Show that \(f \) has no global minimum. What does this say about minimizing the function?

 (d) Given the initial point \(x_0 = (20, -11) \) and descent direction \(p = \langle -2, 1 \rangle \), construct and simplify the line search function \(g(\alpha) = f(x_0 + \alpha p) \), for \(\alpha \geq 0 \).

 (e) Show that the choice \(\alpha = 0.5 \) satisfies the strong Wolfe conditions for the above line search function, with \(c_1 = 0.0001 \) and \(c_2 = 0.9 \).

3. Consider the linear system

\[
\begin{bmatrix}
3 & -1 & 0 & 0 \\
-1 & 3 & -1 & 0 \\
0 & -1 & 3 & -1 \\
0 & 0 & -1 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
5 \\
4 \\
-3 \\
0
\end{bmatrix}
\]

(a) Without calculating determinants, show that the eigenvalues of the coefficient matrix \(A \) are real and positive.

 Hint Look up Gershgorin’s Theorem.

(b) Use *exact* arithmetic and conjugate gradient minimization with starting vector \(x_0 = 0 \) to solve this linear system.