1. Write the following in the form $a + bi$.

 (a) \[\frac{2 - i}{(1 + 2i)(1 - 3i)}. \]

 (b) \[(-2\sqrt{3} + 2i)^5 \]

2. (a) Show that the mapping $w = \frac{z}{1 + z}$ transforms the region to the right of $\text{Re } z = -\frac{1}{2}$ to the open disk $|w| < 1$.

Page 1 Total (30)
(b) **Recall** that the mapping \(w = \frac{1}{z} \) transforms the region \(|z| < 1 \) to \(|w| > 1 \).

Use this to sketch the image of the set \(|z - (-1)| < 1 \) under the mapping \(w = 2 + \frac{3}{1 + z} \).

3. Let \(v(x, y) = 3x^2 + 8xy - 3y^2 + 4x - 5y \).

 (a) Show that \(v \) is harmonic everywhere.

 (b) Find the harmonic conjugate \(u(x, y) \).
4. Let \(f(z) = \frac{1}{1 + 2i - z} \).

(a) Find and simplify the power series expansion of \(f(z) \) centred at \(z = 2 \), valid near this point.

(b) Determine the radius of convergence of this series.

5. Graduate Students: Find the radius of convergence of the power series \(\sum_{n=1}^{\infty} \frac{z^n!}{2^n} \).