1. Find the length of the curve with equation \(y = \frac{x^2}{2} - \frac{\ln(x)}{4}, 2 \leq x \leq 4. \)

 \textit{Answer: } 6 + \frac{1}{4} \ln(2).

2. Find the length of the curve with equation \(y = \ln\left(\frac{e^x + 1}{e^x - 1}\right), 0 < a \leq x \leq b. \)

 \textit{Answer: } \ln\left(\frac{\sinh(b)}{\sinh(a)}\right)

 \textit{Hint: } You should get \(ds = \frac{e^{2x} + 1}{e^{2x} - 1} \) \(dx. \) Divide the numerator and denominator by \(e^x \) to see an easy integral.

3. Find the area of the surface generated when the curve \(9x = y^2 + 18, 2 \leq x \leq 6 \) is rotated about the \(x \)-axis.

 \textit{Answer: } 49\pi.

 \textit{Hint: } It is easier if you write \(ds \) in terms of \(dy. \)

4. Find the area of the surface generated when the curve \(x = a \cosh\left(\frac{y}{a}\right), -a \leq y \leq a, \) is rotated about the \(y \)-axis.

 \textit{Answer: } \pi a^2 (\sinh(2) + 2)

 \textit{Hint: } Remember that \(1 + \sinh^2(z) = \cosh^2(z), \) and use the definitions of \(\cosh \) and \(\sinh. \)