1. Suppose that \(b_1 = 1 \) and \(b_{n+1} = 3b_n + 1 \) for \(n \geq 1 \).

 Show that, if \(b_n = \frac{3^n - 1}{2} \), then \(b_{n+1} = \frac{3^{n+1} - 1}{2} \).

2. Suppose that \(a_1 = 2 \) and \(a_{n+1} = a_n + 2n \) for \(n \geq 1 \).

 Then, \(a_1 = 2, a_2 = a_1 + 2(1) = 4, a_3 = a_2 + 2(2) = 8 \).

 Is it correct that \(a_n = 2^n \)?

3. Prove by the Principle of Mathematical Induction that

 \[
 1 + 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 1 .
 \]

4. Write out the full binomial expansion of \((3a - 4b)^6\).

5. What is the coefficient of \(x^0 \) in the binomial expansion of \(\left(2x^2 - \frac{3}{x^3} \right)^{30} \)?