Rules:

• Show your work.
• Give exact answers.
• Cite any references used, other than your notes.
• You may not discuss this test with anyone but me.
• Hints cost one point each.

1. (5 points) Describe the image of the branch of the hyperbola \(x^2 - y^2 = 1, \ x \geq 1 \) under the mapping \(f(z) = e^{z^2} \).

2. (10 points) Let \(z \neq 0 \) be a fixed complex number. Show that the values of \(z^c \) all lie on a circle about the origin if and only if \(\text{Im } c = 0 \).

3. Let \(C \) be the boundary of the ellipse \(\frac{(x - 1)^2}{9} + \frac{(y - 1)^2}{4} = 1 \), traversed once with positive orientation. For any \(w \notin C \), define
 \[
 g(w) = \oint_{C} \frac{z^2 e^{3z}}{(z - w)^2} \, dz.
 \]
 (a) (5 points) Write \(g(2 - i) \) in the form \(a + bi \), and explain your answer.
 (b) (5 points) Write \(g(3) \) in the form \(a + bi \), and explain your answer.

4. Consider \(f(z) = \sin^6 z \).
 (a) (5 points) Use Euler’s formula for complex \(z \) to expand \(f(z) \) in terms of \(\cos 2z, \cos 4z \cdots \).
 (b) (5 points) Write the Maclaurin series (Taylor series with \(z = 0 \)) for \(f(z) \), in the form \(\sum_{n=0}^{\infty} c_n z^n \), where \(c_n \) is given explicitly.

5. (10 points) Suppose that \(f(z) \) is entire, and \(|f(z)| \leq |z e^{3z}| \) for all \(z \). Given that \(f(1) = 3 \), evaluate \(f'(2) \), and justify your answer.

6. (10 points) Let \(u(x, y) \) be harmonic on the disk \(D_1(1) \), and suppose that \(u \neq 3 \) for \(|z - 1| \leq 1 \). Is it necessarily true that both the maximum and minimum of \(|u - 3| \) for \(|z - 1| \leq 1 \) are achieved on \(C_1(1) \)? Explain your answer.

7. Let \(f(z) = \frac{1}{(z-1)(z-3)} \).
 (a) (5 points) Write the domains of every possible Laurent series centred at \(z = i \).
(b) (5 points) Use partial fractions to find the Laurent series for \(f(z) \) centred at \(z = i \) which is valid in the annulus containing \(z = 2 \).

8. Let
\[f(z) = \sum_{n=0}^{\infty} \left[\frac{1}{(2n+1)!} + 6^n \right] \frac{1}{z^{2n}}. \]

(a) (5 points) Write a simplified formula for \(f(z) \) in terms of well-known functions.
(b) (5 points) Determine the region in which this Laurent series converges.

9. (5 points) Write a formula for a function \(f(z) \) which is analytic everywhere, except for a simple pole at \(z = i \), a pole of order 4 at \(z = 2 \), and an essential singularity at \(z = -1 \).

10. Calculate the following residues:
(a) (5 points) \(\frac{z^2 + 3}{z^3 + 4z^5 - 5} \) at \(z = 1 \).
(b) (5 points) \(\frac{\sin(z + 2)}{z^4} \) at \(z = 0 \).
 Hint: Use trigonometric identities.
(c) (5 points) \(z^{11} \exp \left(\frac{1}{z^2} \right) \) at \(z = 0 \)
(d) (5 points Graduate students/Bonus) \(\exp \left(z + \frac{1}{z} \right) \) at \(z = 0 \).

11. (5 points) Express
\[\oint_{C^+_2(0)} \frac{\exp(z^2)}{1 + 16z^4} \, dz \]
 in terms of residues.

Note: You do NOT need to calculate the residues.