1. Define the following terms:

(a) The *Cartesian product* of sets A and B

(b) R is a *relation* from A to B

(c) The *domain* of the relation R from A to B

(d) The *range* of the relation R from A to B

(e) The *composition* of the relations R and S (i.e. $S \circ R$)

(f) R is a *reflexive* relation on A

(g) R is a *symmetric* relation on $A
(h) R is an *antisymmetric* relation on A

(i) R is a *transitive* relation on A

(j) R is an *equivalence relation* on A

(k) The *equivalence class* of x under the equivalence relation R on A

(l) R is a *partial order* on A

(m) f is a *function* from A to B

(n) f is *one-to-one* (injective) from A to B

(o) f is *onto* (surjective) from A to $B
2. Let \(P \) be the set of all currently living people. Define a relation \(C \) on \(P \) via
\[x \ C \ y \text{ if and only if } x \text{ is a biological child of } y. \]
In English, precisely describe the following:

(a) The domain of \(C \).

(b) The range of \(C \).

(c) The composition \(C \circ C \).

3. Let \(T = \{1, 2, 3, \ldots, 999\} \) be the set of all natural numbers less than 1000.
Define an equivalence relation \(S \) on \(T \) via \(m \ S \ n \) if and only if the sum of the digits of \(m \) and \(n \) is the same.
For example, \(72 \ S 333 \), since \(7 + 2 = 3 + 3 + 3 \)

(a) List all members of the equivalence class \(2 \ / \ S \).

(b) List all members of the equivalence class \(21 \ / \ S \).

(c) How many equivalence classes are there?
4. Let \(V = \{1, 2, 3, \cdots, 20\} \). Define a relation \(D \) on \(V \) via
\[p \, D \, q \text{ if and only if } p \text{ exactly divides } q. \]

(a) *Prove* that \(D \) is a *partial order*.

(b) Explain whether or not \(D \) is a *linear/total order*.

5. Define \(g : \mathbb{N} \to \mathbb{N} \) via \(g(1) = 5, \ g(3) = 11, \) and \(g(n + 2) = 2g(n + 1) - g(n) \) for all \(n \geq 1 \).

Prove that \(g(n) = 3n + 2 \) for all \(n \geq 1 \).
6. Let $A = \{1, 2, 3, 4\}$. Define $s : \mathcal{P}(A) \to \{0, 1, 2, \cdots, 10\}$, via $s(B)$ is the sum of the members of $B \subseteq A$. (Note: $\mathcal{P}(A)$ is the power set of A, and $s(\emptyset) = 0$).

e.g. $s(\{1, 2, 4\}) = 1 + 2 + 4 = 7$.

(a) Prove or disprove: s is one-to-one.

(b) Prove or disprove: s is onto.

(c) Write $s^{-1}(4)$ explicitly.