1. Circle the letter of the following assertions which are always true.

(a) If \(f(x) \) is a function such that \(f(3) > 0 \) and \(f(7) < 0 \), then there exists \(3 < c < 7 \) such that \(f(c) = 0 \).

(b) If \(f(x) \) is continuous at \(x = a \), then \(f(x) \) is differentiable at \(x = a \).

(c) If \(f''(5) = 0 \), then \(f(x) \) has an inflection point at \(x = 5 \).

(d) If \(f'(9) = 0 \) and \(f''(9) > 0 \), then \(f(x) \) has a local minimum at \(x = 9 \).

(e) If \(y \) is twice continuously differentiable, then \(D^2 y = (Dy)^2 \).

(f) If \(f(x) \) is continuous and even on \([-3, 3]\), then \(\int_{-3}^{3} f(x) \, dx = 0 \).

(g) If \(f(x) \) has a local maximum at \(x = 2 \), then \(f(x) \leq f(2) \) for all \(0 \leq x \leq 4 \).

(h) If \(f(x) \) is differentiable on \([3, 6]\), \(f(3) = 2 \) and \(f(6) = 8 \), then there exists \(3 < x < 6 \) such that \(f'(c) = 2 \).

(i) If \(f(x) \) is continuous on \([-4, 9]\), \(\int_{-4}^{9} f(t) \, dt = 5 \), and \(\int_{0}^{9} f(t) \, dt = 8 \), then \(\int_{0}^{-4} f(t) \, dt = 3 \).

(j) If \(f(x) \) is continuous on \([1, 3]\), and \(\int_{1}^{3} f(x) \, dx \) represents the area bounded by \(y = f(x) \), \(y = 0 \), \(x = 1 \) and \(x = 3 \), then \(f(x) \geq 0 \) on \([1, 3]\).
2. Consider \(L = \lim_{h \to 0} \frac{(\pi + h)^2 \sin(\pi + h)}{h} \)

(a) Find a function \(f(x) \) and a point \(a \) so that \(L = f'(a) \).

(b) Use derivatives to find the value of \(L \).

3. If \(f(x) \) is differentiable, find the following in terms of \(f' \) :

(a) \(\frac{d}{dx} \frac{f(x)}{1 + \cos^2 x} \)

(b) \(\frac{d}{dx} f(f(x)) \)

4. A particle starts at \(x = 0 \), and moves along the \(x \)-axis so that its velocity is \(v(t) = 3 - \sqrt{t} \) m/s for \(t \geq 0 \).

(a) Find its position at a general time \(t \).

(b) Find the largest \(x \)-coordinate that the particle reaches.
5. Consider \(\lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{\frac{2i}{n}} \left(3 + \frac{4i}{n} \right) \cdot \frac{2}{n} \).

 (a) Write this limit as an integral, with a specified integrand and limits of integration.

 (b) Evaluate this integral.

6. Let \(f(x) = \begin{cases}
 x + 2 & \text{if } x < 0 \\
 \sqrt{4 - x^2} & \text{if } 0 \leq x \leq 2
\end{cases} \)

 Use geometry to evaluate \(\int_{-3}^{2} f(x) \, dx \)

7. (a) State the Fundamental Theorem of Calculus in the derivative form.

 (b) If \(g(x) = \int_{3}^{x} \frac{1}{4 - t^2} \, dt \) for \(t > 2 \), find \(g'(x) \).
(c) Find \(\frac{d}{dx} \int_{x}^{x^2} \sin(t^2) \, dt \)

8. (a) State the **Fundamental Theorem of Calculus** in the antiderivative form.

5 points

(b) Evaluate \(\int_{1}^{4} \frac{1}{\sqrt{x}} + x^3 \, dx \)

5 points

(c) Evaluate \(\int_{1}^{3} \left(\frac{x^2 + 1}{x} \right)^2 \, dx \)

10 points

9. Evaluate \(\int_{0}^{(\pi/6)^{1/4}} x^3 \sec^2(x^4 + \frac{\pi}{6}) \, dx \)

10 points
10. Evaluate \(\int x\sqrt{1-x} \, dx \)

11. Find the finite area bounded by \(x \geq 0, y = x \) and \(y = \sin \left(\frac{\pi}{2} x \right) \).

12. The region bounded by \(y = 0, y = \sqrt{1-x^4}, x = 0 \) and \(x = 1 \) is rotated about the \(x \)-axis. Find the \textit{volume} of the resulting solid.