1. Find the solution to \[\frac{d^2 y}{dx^2} + 5 \frac{dy}{dx} + 6y = 18x + 3 + 2e^{-2x}, \quad y(0) = -2, \quad y'(0) = 6. \]
2. Find the general solution to $y'' + 4y = \sec^2(2x)$.

3. Given $y_1 = x$ is a solution of $x(x + 1)y'' - xy' + y = 0$, find the general solution of this differential equation.
4. Find the general solution to \(x^2 y'' - 6y = x^3 \).

5. Find the solution to the system of equations:

\[
\begin{align*}
\frac{dx}{dt} & = 3x + y \\
\frac{dy}{dt} & = -x + y,
\end{align*}
\]

where \(x(0) = 2 \), \(y(0) = 0 \).
6. A 2 kg mass stretches a spring \(g/10 \) m. There is damping in this system that is equal to 4 times the instantaneous velocity, and a forcing term of size \(2 \cos(t) \).

(a) Write down the governing differential equation for the motion of the mass. DO NOT SOLVE THE EQUATION.

(b) The general solution to the above differential equation is

\[
x(t) = c_1 e^{-t} \cos(3t) + c_2 e^{-t} \sin(3t) + \frac{9}{85} \cos(t) + \frac{2}{85} \sin(t)
\]

At \(t = 0 \) seconds, the mass is \(9/85 \) below equilibrium, with velocity 0. Find \(c_1 \) and \(c_2 \).

(c) Find the position and velocity for the mass at time \(t = \pi \).