1. (a) Claim: For sets A, B, C,

$$A \cup (B - C) = (A \cup B) - (A \cup C)$$

Find a counterexample to this claim.

(b) Prove the following: If A, B are sets, and $A \subseteq B$ then $A \cup B = B$.

Page 1 Total (20)
2. For each positive integer n, let $A_n = [0, \infty) - (n, 3n]$.

(a) Write A_1, A_2, A_3 as a union of intervals.

(b) Find and simplify $\bigcup_{n=1}^{\infty} A_n$.

(c) Find and simplify $\bigcap_{n=1}^{\infty} A_n$.

Page 2 Total (15)
3. Let \(S = \{aaaaaa, aaaaab, \ldots, zzzzzz\} \) be the set of 6-letter 'words'.

Give exact expressions for the following:

(a) The number of elements in \(S \).

(b) The number of elements of \(S \) whose letters are all different.

(c) The number of elements of \(S \) whose first letter or last letter are vowels (a,e,i,o,u).

(d) The number of elements of \(S \) whose letters are all different, and in alphabetic order, e.g. actuvz

(e) The number of elements of \(S \) that have at least two a’s.
4. (a) Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n + 1)! - 1$ for all positive integers n.

(b) Suppose that $a_1 = 17$, $a_2 = 77$ and $a_{n+2} = 6a_{n+1} - 5a_n$ for $n \geq 1$.
Prove that $a_n = 2 + 3(5^n)$ for all positive integers n.

Page 4 Total (30)
5. Explain or correct the steps in the following proof:

Archimedean Principle. For all positive integers \(a, b \), there exists a positive integer \(n \) such that \(na \geq b \).

Proof:

Suppose not.

Then, there exist \(\hat{a}, \hat{b} \in \mathbb{N} \)

such that \(n\hat{a} < \hat{b} \) for all \(n \in \mathbb{N} \)

Let \(T = \{ \hat{b} - n\hat{a} : n \in \mathbb{N} \} \)

Then, \(T \subseteq \mathbb{N} \) and \(T \neq \emptyset \) \hspace{1cm} \text{Why?}

Then, \(T \) has a smallest element, \(t \). \hspace{1cm} \text{Why?}

There exists \(m \in \mathbb{N} \) such that \(t = \hat{b} - m\hat{a} \) \hspace{1cm} \text{Why?}

But, \(\hat{b} - (m + 1)\hat{a} \in T \) and \hspace{1cm} \text{Why?}

\(\hat{b} - (m + 1)\hat{a} = t - \hat{a} < t \)

This is a contradiction, \hspace{1cm} \text{Why?}

so our hypothesis must be false.