Homework Set 6

Due date: Wednesday 9 April

Type your responses to the extent possible. If necessary, leave blank space in the document to write equations by hand.

1. (20 pts) Here is a phase plane diagram. Locate each critical point by drawing a dot on the plot. Classify the critical point (center, saddle, node, spiral, stable or unstable, etc). Sketch by hand the trajectories that start at \((-0.1, -0.5)\) and \((0, 1)\).

2. (20 pts) Consider the damped pendulum equation, \(\theta'' + c\theta' + \sin \theta = 0\). Write this as a 2 \(\times\) 2 first order system using variables \(\theta\) and \(v = \theta'\). Perform linear stability analysis on the system and identify the eigenvalues \(\lambda^\pm\). Use the eigenvalues to identify the 2 different types of behavior that could occur in the system, based on the value of \(\epsilon\). How do you distinguish the different behaviors?

3. (20 pts) Consider the predator-prey model with no logistic term:

\[
 \begin{align*}
 F' &= aF - cFS \\
 S' &= -kS + \lambda FS
 \end{align*}
\]

Show that the nonzero critical point is a center, implying periodic behavior in the populations.

4. (20 pts) Given the cartesian plots of \(x(t)\) and \(v(t)\) on the back, draw a rough sketch of the corresponding trajectory in the phase plane. Use an arrow to indicate the direction of travel.

5. (20 pts) Consider \(y' = r + y^2\) with \(r < 0\). Use linear stability analysis to show that the base state \(\bar{y} = -\sqrt{-r}\) is stable.
6. (30 pts) Find the bifurcation diagram for \(y' = ry - y^2 \).

7. (20 pts) 536 STUDENTS ONLY. Here is a phase plane diagram. Sketch the trajectory that starts at \((0, 0.25)\). Describe in words what is happening to the object represented by the system, assuming that the horizontal axis \(x \) is the position and the vertical axis \(v \) is the velocity.