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toc7. The Definite Integral

The Definite Integral has wide ranging applications in mathematics,
the physical sciences and engineering.

The theory and application of statistics, for example, depends heavily
on the definite integral; through statistics, many traditionally non-
mathematical disciplines have become heavily dependent on mathe-
matical ideas. Economics, sociology, psychology, political science, ge-
ology, geography, and many others professional fields utilize calculus
concepts.

Unlike the Indefinite Integral, which is a function, the Definite Integral
is a numerical value. As we shall see, on first inspection, there seems
to be no relation between these two mathematical objects, but as the
theory unfolds, their relationship will be revealed.

The Definite Integral, as has been stated already, has wide-ranging
application; however the problem is the diverse backgrounds of stu-
dents taking Calculus. Some may know a lot of physics, while others
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may have good knowledge of electrical circuits. In a Calculus course,
no general background in the sciences is assumed, as a result, the
applications that tend to be presented are of two types:

1. Geometric Applications: All students have a general background
in geometry. Drawing curves should be your forteé. Consequently,
many of the applications to the Definite Integral seen in traditional
Calculus courses are geometric: Calculation of Area, Calculation of
Volume, Calculation of Surface Area, and calculation of Arc Length.
These applications are good in the sense that they allow the student
to see some useful applications, but more importantly, the students
sees the process of constructing the application.

2. Physical Applications: There are some physical applications to
the Definite Integral usually seen in a course on Calculus. Because
of the diverse backgrounds of students, these applications tend to be
easily accessed by everyone: The physical notions of work, hydrostatic
pressure, mass, and center of mass.

The point I am trying to make is that there are many, many more
uses of the Definite integral beyond what you will see in a standard
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Calculus course. Do not leave Calculus with the false impression of
the range of application of the integral.

The Definite Integral is different from the Indefinite Integral in that
the former requires an elaborate construction. It is the construction
process that is key to many applications. In subsequent sections you
will see this construction process unfold in many ways.

7.1. A Little Problem with Area

We begin by motivating the construction of the Definite Integral with
a particular application — to that of the Area problem.

Like, what is it? Throughout your school experiences, the notion of
area has been a fundamental one. Area is a concept whose meaning has
been built up through a series of definitions and deductions through
the years of your education. Area has been inculcated into you through
these years until it has become second nature to you.
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Area though is limited in its application because it is only (mathe-
matically) defined for a limited number of geometric shapes. Did you
know that?

• Here is a brief genesis of the notion of area. It outlines the devel-
opment of the idea from the very first time you encountered it to the
present.

• The Problem
In this section, we mean to extend the notion of area to more compli-
cated regions.

Given. Let y = f(x) be a nonnegative function that is defined and
bounded over the interval [ a, b ].

Problem. Define/Calculate the area of the region R bounded above
by the graph of f , bounded below by the x-axis, bounded to the left
by the vertical line x = a, and bounded on the right by the vertical
line x = b.

Let’s elevate this problem to the status of a shadow box.
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The Fundamental Problem of Integral Calculus:

Figure 1

Let y = f(x) be a nonnegative function that is de-
fined and bounded over the interval [ a, b ]. Define
and/or calculate the area of the region R bounded

above by the graph of f , bounded below by the x-axis,
bounded to the left by the vertical line x = a, and bounded
on the right by the vertical line x = b.

The idea of solving the Fundamental Problem is straight forward
enough; unfortunately, in order to put down in written word this idea,
it is necessary to introduce a morass of notation.

• The Idea of the Solution
If you were asked to approximate the area of region R, you would
probably have enough understanding of the notion of area, despite
the irregular shape of the boundary, to make a good approximation.

How would you do it?
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Figure 2

One obvious way of approximating the area of an irregularly
shaped region is to use paper strips. Get paper and scissors
and cut out a series of rectangles that span the height of the

region. Overlay the region using these paper strips. The heights of the
rectangles need to be cut to better fit into the region. That having
been done, calculate the area of each rectangle (base times height of
each), then sum up all the area calculations: This will be an approxi-
mation of the area of the region.

Intuitively, the more rectangular strips you use (their widths would
necessarily be getting shorter), the better approximation of the area
under the graph you paper rectangular strips would yield.

This then is the basic idea behind solving the Fundamental Problem:
Overlay the region with a larger and larger number of narrower and
narrower paper strips!

Important. In what follows, all the terminology, notation, and the
basic concepts are introduced in much detail . . . detail that you won’t
see elsewhere. Therefore, if you are interested in understanding the
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ideas that go into the making of the Definite Integral, do not skip over
this section. The details of this construction are key to the application
of the definite integral !

• The Technical Details
The details of the above described construction are involved but im-
portant and we present them here.

Let the interval [ a, b ] be given, let n ∈ N be a natural number, and
P be a partition of the interval [ a, b ]:

P = {x0, x1, x2, . . . , xn }.
It is assumed that the labeling of the elements of P is such that

a = x0 < x1 < x2 < x3 < · · · < xn−1 < xn = b. (1)

These points are called partition points, or nodes of the partition.

The nodes of the partition P subdivide the interval [ a, b ] into n subin-
tervals, the endpoints of which are the nodes.
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x0 x1 x2 x3 · · · xi−1 xi · · · · · · · · · xn

Partitioning Scheme
Let’s clarify the discussion and terminology. We have divided [ a, b ]
into n subintervals. The partition points given in (1) will be the end-
points of these subintervals. Let’s count the intervals off.

First Sub-interval : I1 = [x0, x1 ].
Second Sub-interval : I2 = [x1, x2 ].
Third Sub-interval : I3 = [x2, x3 ].
Fourth Sub-interval : I4 = [x3, x4 ].
...

...
...

...
...

...
...

The ith Sub-interval : Ii = [xi−1, xi ].
...

...
...

...
...

...
...

The nth Sub-interval : In = [xn−1, xn ].

These subintervals are generally of different lengths. Let’s establish
the standard notation for the lengths of these intervals and calculate
their lengths.
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i Interval Length
1 I1 = [x0, x1 ] ∆x1 = x1 − x0
2 I2 = [x1, x2 ] ∆x2 = x2 − x1
3 I3 = [x2, x3 ] ∆x3 = x3 − x2
...

...
...

...
...

...
...

...
i Ii = [xi−1, xi ] ∆xi = xi − xi−1
...

...
...

...
...

...
...

...
n In = [xn−1, xn ] ∆xn = xn − xn−1

As the notation suggests, ∆x (with a subscript) is used to reference
the length of an interval. (The value of the subscript is the ordinal
number of the corresponding subinterval.) Thus, ∆x2 is the length of
the second subinterval, or, more generally,

∆xi = xi − xi−1

is the length of the ith subinterval.
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Exercise 7.1. Consider the 5th subinterval in a partition. Write
down the two endpoints of this interval and calculate the length of
this interval. (Be sure to write the correct “∆x” notation.)

Exercise 7.2. What is the sum of

∆x1 + ∆x2 + ∆x3 + · · ·+ ∆xn?

(Assume we have subdivided the interval [ a, b ] into n subintervals.)

Summary: This tabular approach takes a lot of time to construct and
a lot of room. Let’s use a different approach. Let the symbol i be used
as an index for the interval number. If there are n intervals then we
can keep track of them by the index: i = 1 is the first interval; i = 5
is the fifth interval. The preceding discussion and notation can then
by more efficiently abbreviated by

ith interval: Ii = [xi−1, xi ]
length: ∆xi = xi − xi−1, i = 1, 2, 3, . . . , n.
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Figure 3

One role these intervals play is that they subdivide the region
R into n subregions; let’s name these n subregions as

∆R1, ∆R2, ∆R3, . . . , ∆Rn.

Each of these subregions has area. Denote the areas of these regions
by, you guessed it,

∆A1, ∆A2, ∆A3, . . . , ∆An.
Thus,

∆Ai = the area of subregion ∆Ri, i = 1, 2, . . . , n.

Exercise 7.3. What is the sum of

∆A1 + ∆A2 + ∆A3 + · · ·+ ∆An?

Another role these subintervals play in the construction process is
that they form the bases of rectangles that will overlap the target
area. A rectangle is characterized by its location, orientation, width
and height; the area of a rectangle only depends on the latter two
quantities.
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On each of the n subintervals, construct a rectangle sitting on the
subinterval, and extending vertically upward. How high vertically?
(That will be the height of the rectangle.) The decision about the
height of the rectangle is made by choosing a point out of the subin-
terval; the height of the rectangle will then be the distance up to the
graph of f at that point. Here are the technical details—with a morass
of notation.

For each i, i = 1, 2, 3, . . . , n, choose a point x∗i from the ith subinterval
Ii = [xi−1, xi ]; i.e., choose

x∗i such that xi−1 ≤ x∗i ≤ xi.
Now, on the ith subinterval, Ii, construct a rectangle sitting on the
subinterval Ii, and so has base of length ∆xi, and extending vertically
upward a height of f(x∗i ).

Figure 4

It is important to note that the ith rectangle overlays (almost)
the ith subregion ∆Ri. The area of the ith rectangle is used
to approximate the area of the ith subregion ∆Ri. (Recall, we

have defined ∆Ai to be the area of ∆Ri.)
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For each i, the area of the ith rectangle is

f(x∗i ) ∆xi, (2)

for this last calculation, the formula for the area of a rectangle was
used: height times base.

Since the area of the rectangle is thought of as an approximation of
the area, ∆Ai, of ∆Ri, we have

∆Ai ≈ f(x∗i ) ∆xi. (3)

What we now have is a sequence of n rectangles all standing on the
x-axis on their little subintervals extending vertically upwards to the
graph of f . Intuitively, the total area of all the rectangles approximates
the true area of the target region. Let’s sum up all the area calculations
in (3), to obtain,

A ≈ f(x∗1)∆x1 + f(x∗2)∆x2 + f(x∗3)∆x3 + · · ·+ f(x∗n)∆xn. (4)

Sigma Notation. Notice, in (4), all the numbers we are adding up
have the same form: f(x∗i )∆xi, for i = 1, 2, 3, . . . , n. In this situation,
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the sigma notation can be used to abbreviate this sum. The notation
is

A ≈
n∑
i=1

f(x∗i ) ∆xi (5)

The capital Greek letter Σ connotes summation. The notation in (5)
is meant to state that we are adding up the numbers f(x∗i ) ∆xi, for
i = 1, 2, 3, . . . , n. Additional details on the sigma notation will be
given in Section 7.4.

The expression on the right in (5) represents the total area of our
rectangles, and is, in my mind, an approximation of the area we are
trying to define/calculate.

The right-hand side of (5) has its own name. The expression
n∑
i=1

f(x∗i ) ∆xi (6)

is called a Riemann sum. You’ll learn more about Riemann sums later.
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In our setting, the Riemann sums are approximating the area under
the graph of f .

Exercise 7.4. You, theoretically, have just waded through (some)
of the technical details, and, no doubt, you have read The Idea of
the Solution concerning paper strips. Draw the parallel between the
paper strip construction and the details of the technical construction.
In particular, identify each of the quantities: n, i, ∆xi, f(x∗i ), and
f(x∗i )∆xi.

• Passing to the Limit
Now, here’s were the advanced notions of Calculus come in. Up to
this point, it has been all notation and algebra. We must make the
leap from the approximate to the exact.

What we want to do, at least conceptually, is to continue the process of
approximation: partition the interval into a larger and larger number
of intervals (n → +∞); the length of the intervals must necessarily
get smaller and smaller; overlay our approximating rectangles; add up
the areas of same; and so on. We then want to look for any trends
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in our rectangular approximation . . . we want to be able to discern a
limit of these calculations. The formal details follow.

Exercise 7.5. Contrary to my statement in the last paragraph, par-
titioning an interval into a larger and larger number of subintervals
does not necessarily imply that all the subintervals are “small.” Your
assignment, should you decide to take it, is to partition the interval
[ 0, 1 ] into 100 subintervals such that the largest one is length 0.9.
(Think about how this is possible! Don’t look at the solution until
you have thought it through.)

The results of Exercise 7.5 suggest that we need a better under-
standing of the process of partitioning. In particular, we need a way
of expressing the idea that we want to subdivide the target interval
into a large number of small subintervals.

In fact, what we want to do is to take the limit of the Riemann sums
as the partitions upon which the Riemann sums are computed become
“finer and finer”; that is, as the number of subintervals, n, gets larger
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and larger, we want the lengths of each of the subintervals in the
partition to be getting smaller and smaller.

A numerical gauge is used to “control” this subdivision business. Re-
call that if we have a partition P of the interval [ a, b ], then the usual
notation is

a = x0 < x1 < x2 < x3 < · · · < xn−1 < xn = b.

For each i, i = 1, 2, . . . , n, the length of the ith subinterval is given
by ∆xi = xi−xi−1. We now make the following definition: The norm
of the partition P is defined to be

‖P‖ = max{∆x1,∆x2,∆x3, . . . ,∆xn }. (7)

The left-hand side is a symbolism for the norm of the partition P ,
and the right-hand side is the defining expression. In words, the norm
of a partition P is the width of the widest subinterval.

The norm ‖P‖ is used to “control” the subdivision process. The pro-
cess of subdividing the interval [ a, b ] into a larger and larger number
of smaller and smaller subintervals can be more succinctly described
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as ‖P‖ → 0. Indeed, as we look at partitions P whose norm ‖P‖ get-
ting smaller and smaller, the width of the widest subinterval must be
going to zero. This implies that the length of all intervals in the par-
tition must be going to zero, and, as the sum of their length must be
b−a (see Exercise 7.2), it must be true that the number of intervals
in the partition is increasing to infinity.

• Solution to our Problem
The concept now is to take the limit of the Riemann sums as the norm
of the partition, P , tends to zero. Keeping in mind equation (5), define
the area under the graph of f over the interval [ a, b ] to be

A := lim
‖P‖→0

n∑
i=1

f(x∗i ) ∆xi. (8)

Furthermore, because of the arbitrary way in which we chose the
heights of our approximating rectangles (by choosing the x∗i from the
ith subinterval Ii, and taking f(x∗i ) as the height), we require that the
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limit of the right-hand side of (8) be independent of the choice of the
points x∗i .

As mathematicians often do, let’s formalize this into a . . .

Definition 7.1. Let y = f(x) be a nonnegative function over the
interval [ a, b ]. The area of the region under the graph of f and above
the x-axis is defined to be

A := lim
‖P‖→0

n∑
i=1

f(x∗i ) ∆xi. (9)

provided the limit exists and does not depend on the choice of the
points x∗i .

Definition Notes: The limit given in Definition 7.1, equation (9), is
a type of limit essentially discussed earlier. The Riemann sum is,
roughly speaking, a function of the variable ||P ||; consequently, in the
article on Limits, the meaning for the limit of a function was given in
Definition 8.1.
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For Those Who Want to Know More. Actually, Riemann sums
are not a function of the norm of the partition upon which they are
based; consequently, a variation of Definition 8.1 needs to be stated.

In the Section 7.5 below, Evaluation by Partitioning, the tech-
niques of working with this limit are illustrated.

This definition is the culmination of the constructive process
laboriously given above, and represents a half-solution to the Funda-
mental Problem. The problem was to define/calculate area; well, we
have defined area under an arbitrary curve (with provisos), but we
have no formal mechanism for the calculation of same—that comes
later.

With all the provisos, one would wonder whether any function
is of such a nature that the limit in Definition 7.1 exists. I assure
you that there are plenty of such functions. Indeed, any continuous
function will due the trick.
Introduction of Definite Integral Notation. We now introduce
the notation for the ultimate outcome of the constructive process. Our
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basic definition is

A := lim
||P ||→0

n∑
i=1

f(x∗i ) ∆x,

We used the letter A because of the nature of the problem we were
solving: An area problem. The right-hand side is the important ex-
pression. Because of its importance in modern analysis, it has its own
notation to refer to it: The Leibniz Notation.

Definition 7.2. Let y = f(x) be a nonnegative function over the
interval [ a, b ]. The area of the region under the graph of f and above
the x-axis is defined to be∫ b

a

f(x) dx := lim
||P ||→0

n∑
i=1

f(x∗i ) ∆x, (10)

provided this limit exists and does not depend on the choice of the
points x∗i .
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Definition Notes: The symbolism on the left-hand side should be fa-
miliar to you. It is actually the source of the notation for the Indefinite
Integral that we have already been using. Leibniz thought of the limit
process on the left-hand side of (10) as an infinite summation process;
correspondingly, he created the notation

∫
, which is an exaggerated

version of S — for summation. The notation,
∫ b
a

, he thought of as
a process of summation from a to b. The symbolism,

∫ b
a
f(x) dx, he

viewed as a transfinite summation process of adding up areas of rect-
angles whose areas are f(x) dx. This view is technically incorrect, but
it serves as good intuition.

In certain simple cases, the limit in (10) can be calculated di-
rectly from the definition by using summation rules. (See Section 7.5
entitled Evaluation by Partitioning for more details.)

For Those Who Want to Know More. For completeness sake,
we give the reference to the precise definition of limit used above in
equation (10).
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With this notation under our belt, we can summarize:

Solution to the Fundamental Problem:

Figure 5

Let f be a nonnegative function defined over an inter-
val [ a, b ]. The area under the graph of f and above
the x-axis is given by

A =
∫ b

a

f(x) dx.

An aesthetically pleasing formula, isn’t it? (Provided the limit exists
in the sense described in Definition 7.2).

Example 7.1. Consider the function f(x) = x2, 0 ≤ x ≤ 1. Use the
integral notation to represent the area under the graph of f and above
the x-axis.
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Example 7.2. Symbolically represent, in terms of the definite inte-
gral, the area under the graph of f(x) = 3x3 + x over the interval
[ 1, 4 ].

Exercise 7.6. Consider the function f(x) = x4 + x restricted to
the interval [−1, 5 ]. Represent symbolically, in terms of the definite
integral, the area under the graph.

7.2. The Definite Integral

We have seen in Section 7.1 the constructive process in the case of
analyzing the area problem. That was just a representative application
of how the constructive process is used to solve certain problems.
Don’t worry, I’ll not go through that morass again, but we can abstract
the process itself . . . in summary form.

Definition 7.3. (The Definite Integral) Let y = f(x) be any
function (not necessarily nonnegative) on the interval [ a, b ].

1. Partition [ a, b ]

a = x0 < x1 < x2 < x3 < · · · < xn−1 < xn = b,
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into n subintervals. The ith subinterval has the form [xi−1, xi ],
and has length ∆xi = xi − xi−1, for i = 1, 2, 3, . . . , n.

2. Choose Points x∗i from each interval:

xi−1 ≤ x∗i ≤ xi, i = 1, 2, 3, . . . , n.

3. Form Riemann Sums:
n∑
i=1

f(x∗i ) ∆xi.

This sum is a Riemann sum of the function f over the interval
[ a, b ].

4. Pass to the Limit : Define integral by,∫ b

a

f(x) dx := lim
||P ||→0

n∑
i=1

f(x∗i ) ∆x. (11)

As before, the limit must exist and not depend on the choice
of the arbitrarily chosen points x∗i .
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Definition Notes: A function f defined over an interval [ a, b ] is said
to be Riemann integrable over [ a, b ] provided the limit in (11) exists.

The term Riemann Sum is important and worth making special
note. Basically, a Riemann Sum is a sum of a function, f , being evalu-
ated at certain intermediate points, x∗i , times the width of the interval
of partition, ∆xi. The limit of Riemann Sums is an integral—this is
equation (11). We shall return to the important notion of Riemann
sum later; one of the basic skills needed by the Calculus student, that’s
you, is the ability to recognize a Riemann Sum.

For Those Who Want to Know More. Here is the technical def-
inition of the limit given in (11).
Parsing the Notation. The basic notation for the definite integral
is ∫ b

a

f(x) dx.

Here are some points concerning this notation.



Section 7: The Definite Integral

Notational Notes: The numbers a and b are called the limits of inte-
gration: a is the lower limit of integration and b is the upper limit of
integration.

The limits of integration form an interval [ a, b ]. This interval is
referred to as the interval of integration.

The function f(x) is called the integrand.
The symbol, dx, the differential of x, plays the same role as it

did for the indefinite integral. (See the discussion of the significance
of dx.) The symbol, dx, tells us that x is the variable of integration.

The variable of integration is a dummy variable. The variable
of integration tells us what variable the integrand is a function of;
otherwise, the actual letter has no significance. For example, each of
the integrals is the same as all the others:∫ b

a

f(x) dx =
∫ b

a

f(s) ds =
∫ b

a

f(t) dt =
∫ b

a

f(u) du.
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Or, if you are having trouble thinking abstractly, all these integrals
are the same:∫ 1

0
x2 dx =

∫ 1

0
s2 ds =

∫ 1

0
t2 dt =

∫ 1

0
u2 du.

In each instance, the integrand is the same function (it’s just defined
or represented using different letters). The corresponding differential
notation has been changed to reflect the different dummy variable
used in the definition of the integrand. This is an important point to
remember.
Purely Geometric Interpretation of the Definite Integral. Let
y = f(x) be (Riemann) integrable over the interval [ a, b ]. It is possible
to give a purely geometric interpretation of∫ b

a

f(x) dx,

based on the graph of f ; this is an important and fundamental inter-
pretation.



Section 7: The Definite Integral

Figure 6

Here we do not assume that f is nonnegative. Imagine the
graph of f . It may vary above or below the x-axis. Now imag-
ine the rectangles sitting on the subintervals. If the graph is

above the x-axis, then the rectangle extends upwards; if the graph
is below the x-axis, then the rectangle extends vertically downward.
When we form the Riemann Sums,

n∑
i=1

f(x∗i ) ∆x, (12)

some of the values of f(x∗i ) will be positive and some negative. For
the rectangles that are hanging downward, the f(x∗i ) ∆x term for that
rectangle will be negative: It represents the negation of the area of that
rectangle. We then sum up these positive and negative terms (12) and
pass to the limit to obtain the integral of f .

If you have followed this discussion, the bottom line is that the integral
treats areas below the x-axis as negative and areas above the x-axis
as positive. Of course, when I refer to area as negative, that does not
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correspond to the usual notion of area. It is just a convenient device
on my part to convey the idea.

To repeat, the integral treats regions below the x-axis as negative
area, and regions above the x-axis as positive area, then adds all
calculations together; consequently it is possible for∫ b

a

f(x) dx > 0 or
∫ b

a

f(x) dx < 0 or
∫ b

a

f(x) dx = 0

Perhaps I can use the term Relative Area or Signed Area to describe
what the definite integral is calculating.

Consider the discussion in the previous paragraphs, then thoughtfully
answer each of the following.

Exercise 7.7. Consider each of equation or inequality that follows.
What is the most general statement that can be made about each?

(a)
∫ b

a

f(x) dx > 0 (b)
∫ b

a

f(x) dx < 0 (c)
∫ b

a

f(x) dx = 0
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7.3. The Existence of the Definite Integral

Because of the complicated nature of the definition of the Definite
Integral, one may wonder whether it is possible for any function to
be integrable. In this section we briefly catalog types of functions
that survive the rigors of the constructive definition, to emerge as
integrable.

Theorem 7.4. (The Existence Theorem) Let f be a function that
is either continuous or monotone over the interval [ a, b ], then f is
integrable over [ a, b ], i.e.∫ b

a

f(x) dx exists.

Proof. Beyond the scope of these notes.

Theorem Notes: This theorem justifies the earlier interest in continu-
ous functions, and monotone functions. Identifying a function as one
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whose integral exists often depends on the ability to recognize these
basic function types.

The conclusion of the Existence Theorem is also valid if the
function f is piecewise continuous. A function f is piecewise contin-
uous over an interval [ a, b ] provided f has only a finite number of
discontinuities within the interval [ a, b ].

The conclusion of the Existence Theorem is also valid if the
function f is piecewise monotone. A function f is piecewise monotone
over the interval [ a, b ] provided we can partition the interval

a = x0 < x1 < x2 < x3 < · · · < xn = b

such that f is monotone over each subinterval [xi−1, xi ]. for i = 1, 2,
3, . . . , n.

Virtually all functions encountered in a typical calculus course
are piecewise continuous or monotone.

A monotone function may have infinitely many discontinuities,
yet still has a finite integral!
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Example 7.3. Piecewise Continous Function. A piecewise con-
tinuous function can easily be constructed using piecewise definitions
of functions. For example,

f(x) =
{
x2 x < 1
3− x x ≥ 1

is piecewise continuous on [−2, 2 ]. (There is a single discontinuity
within this interval at x = 1.)

Exercise 7.8. Is the function f defined in Example 7.3 piecewise
monotone over the interval [−2, 2 ]?

•Exercise 7.9. Think about different piecewise continuous functions
and piecewise monotone functions (Example 7.3 and Exercise 7.8
and all possible variations). Are these types of functions one in the
same? That is, is it true that every time you write down a piecewise
continuous function that function must be piecewise monotone? More
precisely, can you give an example of a piecewise continuous function
that is not piecewise monotone?
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•Exercise 7.10. Give an example of a function that is monotone but
not piecewise continuous.

(Hint : Sit back and try to imagine such a function.)

7.4. Summation Techniques

Earlier in these notes, the sigma notation was introduced. In this
section we survey some common and useful properties of summation
and introduce some famous summation formulas—all in preparation
for the Section 7.5, entitled Evaluation by Partitioning.

The sigma notation is a way of conveying to the reader a summa-
tion process. It is important to learn to read this notation so that
you can understand the thoughts that the writer is trying to commu-
nicate to you. The sigma notation is used throughout mathematics,
engineering, physics, statistics, and any other fields of study that use
mathematics—so pay attention!

The Notation. Suppose we have a collection of numbers

a1, a2, a3, a4, . . . , an (13)
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we wish to sum. The notation for summing these numbers is
n∑
i=1

ai = a1 + a2 + a3 + a4 + · · ·+ an (14)

Sometimes we want to sum over a subset of the numbers (13). Let k
and m be integers such that 1 ≤ k < m ≤ n. Now suppose we want
to sum the numbers

ak, ak+1, ak+2, . . . , am.

The notation of the sum of these numbers is
m∑
i=k

ai = ak + ak+1 + ak+2 + · · ·+ am. (15)

Notational Notes: The letter i in (14) is referred to as the index of
the sum. In (14), the index ranges from an initial value of i = 1 to a
terminal value of i = n.
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The index is a dummy variable. It is a symbol that is used to
describe the numbers to be added. The choice of the letter used to
describe the summation process is not important. For example

n∑
i=1

ai

n∑
j=1

aj

n∑
α=1

aα

all represent the sum of the same set of numbers.
Algorithm For Expanding the Sigma Notation. There is

a (simple) way of expanding the sigma notation. (By expanding the
sigma notation I mean taking the left-hand side of (14), and writing
it as the right-hand side of (14).)
The sigma notation is used in several ways: (1) As a way of summing
symbols, as is the case in (14), for example; and (2) as a way of
summing a particular set of numbers. We have yet to see examples of
(2)—that comes now. Here are a few visual examples:

1.
5∑
i=1

i3 = 13 + 23 + 33 + 43 + 53.
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2.
3∑
j=1

j

j + 1
=

1
2

+
2
3

+
3
4

.

3.
n∑
k=1

2k = 2 + 4 + 6 + 8 + · · ·+ 2n.

Notice that use of different indices in each of the examples—this is
just to emphasize the point that any symbol can be used to index the
sums. To fully understand these expansions, study the Algorithm for
Expanding the Sigma Notation. Use this algorithm to expand the
left-hand sides of each of the above examples. If you understand the
algorithm, you will obtain the right-hand sides.

Exercise 7.11. In item (1) above, name the index, the initial value
of the index and the terminal or final value of the index.

Exercise 7.12. To test your understanding of the Algorithm for
Expanding the Sigma Notation, expand each of the following
summations:
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1.
4∑
i=1

(i2 − 2i) 3.
5∑
j=1

j

(j2 + 2)

2.
4∑

α=1

(5α+ 1) 4.
7∑
i=4

i2

The Algebraic Properties of Summation. When we manipulate
sums of quantities we frequently take advantage of certain useful re-
lationships the summation process enjoys.

Let a1, a2, . . . , an and b1, b2, . . . , bn be (possibly) two sets
of numbers. Let c ∈ R be considered a constant. Then

1.
n∑
i=1

cai = c

n∑
i=1

ai 2.
n∑
i=1

(ai + bi) =
n∑
i=1

ai +
n∑
i=1

bi
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Verbalizations. The first equation states that the sum of some numbers
all of which have the same factor of c is that constant, c, times the
sum of the numbers. The second equation states that the sum of a
sum is the sum of the sums.

Exercise 7.13. Meditate on the phrase: “the sum of a sum is the
sum of the sums.” Attempt to understand its meaning in relation to
(2).

To illustrate these properties, suppose I tell you that
20∑
i=1

i = 210 and
20∑
i=1

i2 = 2,870. (16)

Exercise 7.14. Utilizing (16), as well as the properties of summa-
tion, (1) and (2), calculate the sum of the following:

1.
20∑
i=1

(i2 − 2i) 2.
20∑
α=1

(3α2 − 4α)



Section 7: The Definite Integral

•Exercise 7.15. Prove the Algebraic Properties of Summation:
(1) and (2).

Some Common Summation Formulas. Here are some famous
summation formula that we will be using in this section. Here are the
same formulas expanded out.

1.
n∑
i=1

c = nc 3.
n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

2.
n∑
i=1

i =
n(n+ 1)

2
4.

n∑
i=1

i3 =
[
n(n+ 1)

2

]2

Keys to Success. To master the use of these summation formulas,
you have to understand their meaning. For example, summation for-
mula (3) enables us to calculate the sum of the squares of the first
‘so many’ integers. Therefore, whenever you are summing up sums of
squares of integers, you should think of this formula. Of course, the
first task is to realize that you are summing up the first ‘so many’
squares of integers!
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Example 7.4. Here is a few sample calculations to illustrate the
above formulas. Problem: Calculate each of the following:

1.
40∑
i=1

2 2.
20∑
i=1

i 3.
10∑
i=1

i2 4.
15∑
i=1

i3.

(You might what to try them yourself before looking at the solution.)

In the examples above, the index has been the letter i. Of course,
there in no significance to that particular letter. The index can be
any letter.

Exercise 7.16. Calculate each of the following sums.

1.
20∑
i=1

3 2.
33∑
j=1

j 3.
15∑
k=1

k2 4.
20∑
α=1

α3

Exercise 7.17. In Exercise 7.16, you just calculated sums by for-
mulas. Do you understand what numbers you just added up? In this
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exercise, write out the numbers and their sums using the following
format:

a1 + a2 + a3 + a4 + · · ·+ an = calculated sum. (17)

That is, write out the first four numbers, put “ . . . ” then write out
the last number and put the sum equal to the . . . sum!

Exercise 7.18. If you were cornered by a terrible monster and he is
forcing you to write the expression (17) in terms of the sigma notation,
how would you do it to get out of the predicament?

The summation formulas can be combined with the algebraic proper-
ties of summation to solve more complex summation problems.

Example 7.5. Compute the sum of each:

1.
10∑
i=1

i(3i+ 2) 2.
15∑
j=1

(4j3 − 9j2 + 2) 3.
n∑
k=1

(3k2 − k)

Now try doing some problems yourself. Work them out first before
looking at the solutions. Just because you are working at home and
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not turning in the problems for credit is no reason not to be neat.
Follow my examples for presenting mathematics.

Exercise 7.19. Calculate the sum each of the following:

1.
12∑
i=1

(4i2 − 6i) 2.
15∑
j=1

(6j3 − 4j2 − 12) 3.
n∑
k=1

(2k2 − 3k)

References: The Properties of Summation and the Summation For-
mulas.

All the formulas given above sum from 1 to n, where n is any positive
integer. What if we wanted to sum over a different range of values for
the index? Here’s the critical but trivial observation:

n∑
i=k

ai =
n∑
i=1

ai −
k−1∑
i=1

ai (18)

Read this equation and try to understand its meaning, then use it
along with the algebraic properties of summation and the basic sum-
mation formulas to solve the next exercise.
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Exercise 7.20. Find the sum of the following terms:

1.
40∑
i=20

i 2.
20∑
j=12

j2 3.
10∑
k=5

k3

Writing the Sigma Notation. Given a sum, already written in the
sigma notation, we have concentrated, up to this point, on expanding
the notation and calculating its value using the summation formulas.
It is also important to be able to write a series of numbers that follow
some discernible pattern in terms of the sigma notation.

Illustration 1. For example, consider the following:

1
1 + 1

+
2

1 + 2
+

3
1 + 3

+ · · ·+ n

1 + n
.

There is an obvious pattern here. It should clear to you that

1
1 + 1

+
2

1 + 2
+

3
1 + 3

+ · · ·+ n

1 + n
=

n∑
i=1

i

1 + i
.
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Here’s an in-line example.

Example 7.6. Write the series in sigma notation:

1 + 2 + 22 + 23 + 24 + · · ·+ 2n.

Exercise 7.21. Write the sum in sigma notation:
√

1 + 1 +
√

1 + 4 +
√

1 + 9 +
√

1 + 16 + · · ·+
√

1 + n2.

Use good and proper notation.

In some problems in Calculus, the level of abstraction is a little higher.
Try solving the one.

Exercise 7.22. Let f be a function. Write

(1 + f(1))3 + (1 + f(2))3 + (1 + f(3))3 + · · ·+ (1 + f(n))3.

Let’s abstract a little more.
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Exercise 7.23. Let f be a function. Write

sin(f(x1)) + sin(f(x2)) + sin(f(x3)) + · · ·+ sin(f(xk)),

where x1, x2, x3, . . . , xn are a pre-selected set of numbers.

The last exercise is a kind of sum that appears in the constructive
definition of the Definite Integral. Recall the form of a Riemann Sum:

n∑
i=1

f(x∗i ) ∆xi = f(x∗1) ∆x1 + f(x∗2) ∆x2

+ f(x∗3) ∆x3 + · · ·+ f(x∗n) ∆xn.

Reading from left to right, the left side can be expanded using the
algorithm to obtain the right-hand side. Now if you start from the
right-hand side, you should be able to see the pattern and should be
able to construct the sigma notation that is the left-hand side.
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7.5. Evaluation by Partitioning

Certain integrals can be evaluated directly from the definition. Cal-
culating an integral from its definition brings alive this constructive
definition and helps us to better understand the definite integral.

In applied fields, the definite integral is estimated using numerical
techniques. All of these techniques are founded on the constructive
definition. Even though we will learn a very slick method of evaluat-
ing a definite integral in Section 8, this method cannot be applied
to every definite integral. Some integrals have to be estimated using
numerical techniques. Knowledge of the constructive definition of the
definite integral is essential to better understanding numerical meth-
ods that are so important in the applied diciplines.

That having been said, let’s pause a little while to compute a few
integrals.

General Problem: Compute
∫ b

a

f(x) dx from the definition.
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The first step in this process is to subdivide the interval of integration,
[ a, b ], into subintervals. Very often, it is convenient to subdivide the
interval [ a, b ] into subintervals of equal length.

Definition 7.5. A regular partition of [ a, b ] is a partition,

P = {x0, x1, x2, . . . , xn }
such that,

∆x1 = ∆x2 = ∆x3 = · · · = ∆xn,

where ∆xi = xi − xi−1 is the width of the ith subinterval, i = 1, 2,
3, . . . , n. In this case, the partition, P , has subdivided the interval
[ a, b ] into n subintervals all of the same length.

Important Point. If we want to partition the interval [ a, b ] into n
subintervals of equal length (a regular partition) then the common
width of these subintervals will be (b− a)/n; that is

∆x1 = ∆x2 = ∆x3 = · · · = ∆xn =
b− a
n

. (19)
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As a shorthand notation, write ∆x = (b− a)/n (without a subscript)
to represent this common length.

Note also that the norm of a regular partition P is ||P || = (b−a)/n =
∆x.

Calculation of ∆x for a Regular Partition:
If we want to subdivide the interval [ a, b ] into n subinter-
vals all having the same length, the common length of these
subintervals is given by

∆x =
b− a
n

Take some time out to make sure you believe equation (19).

Exercise 7.24. Verify, in your own mind, equation (19).
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Exercise 7.25. Suppose we have the interval [ 1, 4 ] and we want to
partition it into n = 6 subintervals of equal length. What is the value
of their common length?

Steps for Calculating
∫ b

a

f(x) dx from the Definition.

The calculation of an integral from its definitional roots generally
takes five steps:

1. Calculate the value of ∆x = (b− a)/n (the n is kept symbolic);
2. calculate the partition points (nodes);
3. choose the intermediate points x∗i ;
4. given that choice, calculate the exact sum of the corresponding

Riemann Sum; and
5. having calculated the Riemann Sums; calculate the limit of the

Riemann sums as the norm of the partition tends to zero. (See
constructive definition of the definite integral.

Some Notes on the Calculation of the Partition Points. When
using a regular partition, it is actually very easy to compute the nodes.
Let me explain through a series of exercises that you should solve. Be
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sure to read the solutions to these exercise because they contain some
standard techniques for computing the nodes of a regular partition.

Try to figure this one out on your own . . . it is important, not very
difficult.

Exercise 7.26. The endpoints of the interval, a and b, are known.
Generally, we decide to subdivide the interval into n equal subinterval,
so n is known, what is unknown is the values of the partition points
or nodes:

x0, x1, x2, x3, x4, . . . , xn.

Here’s a visualization for your viewing pleasure:

x0 x1 x2 x3 · · · xi−1 xi · · · · · · · · · xn

Partitioning Scheme
Determine how to calculate these points using the known information:
a, b, and n.



Section 7: The Definite Integral

Exercise 7.27. We want to subdivide the interval [ 1, 4 ] into 6 subin-
terval all of the same length. Calculate the partition points or nodes
of this partition. (Hint : Consult Exercise 7.26)

Here is an (optional) exercise of the same type.

Exercise 7.28. Subdivide the interval [−1, 5 ] into 8 equal subinter-
vals. Calculate the nodes of this partition. Use good notation.

Exercise 7.29. A friend of mine has partitioned an interval into 20
equal subintervals and has obtained a formula for each partition point:

xi = 4 +
4i
5

i = 0, 1, 2, 3, . . . , 20.

The problem is that he won’t tell me which interval he subdivided.
Can you help me out?

Partition Limits and Regular Partitions. The kind of limit that
appears in the definition of the definite integral is a fairly complicated
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one: ∫ b

a

f(x) dx = lim
||P ||→0

n∑
i=1

f(x∗i ) ∆xi. (20)

Let f be integrable over the interval [ a, b ], this means that the limit
in equation (20) exists and does not depend on the choice of the
intermediate points x∗i . Focus in on the ||P || → 0 in (20). When P is
a regular partition, ||P || = (b − a)/n. As ||P || gets closer and closer
to zero, it must be true that n, the number of subintervals into which
we have subdivided [ a, b ], must be getting larger and larger. Observe,
therefore, that for regular partitions:

||P || → 0 is equalivalent to n→∞.

Consequently, when working with regular partitions, equation (20) is
rewritten as ∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i ) ∆x. (21)
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Notice not only the replacement of ||P || → 0 with n→∞ in (21), but
also the replacement of ∆xi with just ∆x. Both of these replacements
tend to simplify the (complex) task of calculating a definite integral
from its definition.

• For Those Who Want to Know More. Here is the technical definition
of the limit given in (21).

Let’s elevate equation (21) to the status of a shadow box for easy
reference later. The notation within the box is the standard notation
of the constructive definition.

Regular Partitions: Calculating a Definite Integral :
Let f be integrable over the interval [ a, b ]. Then∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i ) ∆xi
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Calculation of Definite Integrals. Let’s begin evaluating definite
integral by checking for internal consistency. Consider the function
f(x) = 3, 0 ≤ x ≤ 2. Graph this function up over this interval. The
region under the graph is a rectangle. The base, b, of the rectangle is
the length of the interval [ 0, 2 ], which is b = 2. The height, h, of the
rectangle is h = 3. Therefore, the area under the graph of f graphed
over the interval [ 0, 2 ] is A = bh = (2)(3) = 6. Will the definite
integral yield this same value? Let’s see.

Example 7.7. Calculate
∫ 2

0
f(x) dx, where f(x) = 3, using the con-

structive definition of the definite integral.

Exercise 7.30. Compute
∫ 4

1
f(x) dx, where f(x) = 5 using the con-

structive definition of the definite integral.
(Hint : Follow the steps of Example 7.7)
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Here is the same problem but abstracted. The end result of the exer-
cise is to assure ourselves that the integral always gives us back the
area of rectangle.

•Exercise 7.31. Let b and h be positive numbers. Define a function
by f(x) = h. Show, from basic principles, that∫ b

0
h dx = bh.

(Hint : Follow Example 7.7.)

Let’s move on to something a little more challenging: The area of a
triangle. We still want to check whether the definite integral produces
the answer we would expect it to produce. If it does, it will give us
more and more confidence that the constructive definition is correct;
that is, it defines what we think it defines.

Example 7.8. Consider the function f(x) = 4x over the interval
[ 0, 5 ]. The region under the graph of f and above the x-axis is a
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triangle with base 5 and height 20 (f(5) = 20). The area under the
graph can be expressed by

A =
∫ 5

0
4x dx.

Calculate the value of this integral from basic principles.

We have seen now several examples of how to calculate the value of
a definite integral. A natural question arises: In Example 7.8, we
obtained a value of 50, how do we know that the is really the value of
the integral?

In that example, we chose as the intermediate values, x∗i , the right-
hand endpoints. The definition requires that the limit of the Riemann
sums be the same value no matter the what choice of the intermediate
points. How do we know that if we had chosen the left-hand endpoints
or the midpoints of each interval, or some randomly chosen points
taken from each interval, we would always come out with a limit of
50?
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•Exercise 7.32. Read the discussion of the previous paragraphs and
determine the reason why no matter how we would have chosen, the
limit of the corresponding Riemann Sums would have still come out
to be 50.

Exercise 7.33. In Example 7.8 we calculated the value of∫ 5

0
4x dx = 50.

Review the solution to that example, and based on your review de-
termine the value of the integral:∫ 5

0
−4x dx.

Exercise 7.34. Use the constructive definition of the definite inte-
gral to calculate the integral∫ 2

0
3x+ 1 dx.
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Take the intermediate points to be the right-hand endpoint of each
subinterval. Before you get started, can you predict the answer based
on geometric interpretation?

Let’s try another where the lower limit of integration is nonzero. This
exercise is done the same way as the previous; however, there is con-
siderably more algebra—good thing you are a master of algebra!

•Exercise 7.35. Calculate
∫ 2

−1
3x2−2x dx using the constructive def-

inition of the definite integral.

7.6. Properties of the Definite Integral

In this section we take a survey of the general properties of the Def-
inite Integral. These properties are very useful in the calculation of
the integral, as well as completing your understanding of the basic
integral.
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All the following properties can be readily deduced form the construc-
tive process. The first few properties will be quite familiar to you, as
they are shared properties of the Indefinite Integral.

Homogeneous Property. Suppose the f is integrable over the in-
terval [ a, b ] and c ∈ R, then cf is integrable over the interval [ a, b ],
and ∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx.

The Additive of Integrand. Suppose the functions f and g are
integrable over the interval [ a, b ], then f + g, is integrable over the
interval [ a, b ], and∫ b

a

f(x) + g(x) dx =
∫ b

a

f(x) dx+
∫ b

a

g(x) dx

Of course, a similar statement is true for the difference of two func-
tions.
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Additivity of Limits. Suppose f is integrable over the interval
[ a, b ], and let c ∈ [ a, b ], then∫ b

a

f(x) dx =
∫ c

a

f(x) dx+
∫ b

c

f(x) dx.

Nonnegativity of the Integral. Suppose the function f is inte-
grable over [ a, b ] and that f(x) ≥ 0 over [ a, b ], then∫ b

a

f(x) dx ≥ 0.

Monotone Property of the Integral. Suppose f and g are inte-
grable over the interval [ a, b ] and that f(x) ≤ g(x) for all x ∈ [ a, b ],
then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.
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Absolute Integrability. Suppose f is integrable over the interval
[ a, b ], then |f | is integrable over the interval [ a, b ] too, and∣∣∣∣∣

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx.

Integral over Interval of Zero Length. We occasionally come
across the problem in integrating over an interval of zero length. We
make the following definition: For any number a ∈ Dom(f),∫ a

a

f(x) dx = 0.

Reverse Order of Integration. When we perform substitution, the
limits of integration sometimes get mixed around. In order to make
valid the substitution method with definite integrals, we make the
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following definition: Suppose f is integrable over the interval [ a, b ],
then ∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

8. Evaluation of the Definite Integral
Despite the very complicated nature of the construction of the definite
integral, there is an elementary technique for its evaluation. That is
the topic if this section.

8.1. The Fundamental Theorem of Calculus

There is a surprising relationship between the divine simplicity of an-
tidifferentiation and the infernal construction of the definite integral;
a relationship that is set forth in the two theorems.
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Theorem 8.1. (Fundamental Theorem of Calculus, Part I.) Let f be
continuous over the interval [ a, b ], then antiderivatives of f exist. In
particular, define a new function F on the interval [ a, b ] by,

F (x) =
∫ x

a

f(t) dt,

then F is an antiderivative of f ; this means that for any x ∈ ( a, b ),
F ′(x) = f(x).

Proof.

Theorem 8.2. (Fundamental Theorem of Calculus, Part II.) Let f
be integrable over the interval [ a, b ], and suppose there is an anti-
derivative F of f over the interval ( a, b ). Then,∫ b

a

f(x) dx = F (b)− F (a).

Proof.
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8.2. The Mechanics: Simple Demonstrations

The Fundamental Theorem of Calculus is our big weapon for evaluat-
ing definite integrals:∫ b

a

f(x) dx = F (b)− F (a), (1)

where F is any antiderivative of f .

Exercise 8.1. We have learned that the most general antiderivative
of a function f(x) has the form F (x) +C. In the above statement, we
emphasize the word ‘any ’ antiderivative. Show that the inclusion of
the constant C has no effect on the value of the integral in equation
(1).

Notational Conventions.
The right-hand side of the above equation is often abbreviated to

F (x)|ba = F (b)− F (a) (2)
thus,
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a

f(x) dx = F (x)|ba .

The function F is an antiderivative of f . The techniques for con-
structing antiderivatives was discussed exhaustively earlier. Recall,
an antiderivative of f is the same as the indefinite integral of f :∫

f(x) dx,

and so, equations (2) becomes∫ b

a

f(x) dx =
∫
f(x) dx

∣∣∣∣b
a

.

Let’s look at a series of examples.

Example 8.1. Evaluate
∫ 3

2
x2 dx.



Section 8: Evaluation of the Definite Integral

Example 8.2. Evaluate
∫ 4

0
x
√
x dx, and interpret its value.

Example 8.3. Evaluate
∫ −1

−2
x4 − 2x dx.

Summary : Definite Integration problem,∫ b

a

f(x) dx

consists of two distinct steps:
1. Evaluate an Indefinite Integral:∫

f(x) dx

This step was discussed extensively earlier. The evaluation of an
indefinite integral is a function whose derivative is f(x).
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2. Evaluate Indefinite Integral between the Limits:∫
f(x) dx

∣∣∣∣b
a

This step is merely numerical, and, as such, is conceptually
rather simple; however, this step must be given your fullest at-
tention as there are plenty of opportunities for error.

The first step can be rather difficult; the second, given the first step
has been completed, is trivial. (Yet, error can occur, be careful).
Therefore, the emphasis in Calculus I and Calculus II is on devel-
oping the techniques to successfully accomplish step (1).
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9. Techniques of Evaluating Definite Integrals
In this section we take a survey of standard methods of evaluating
the definite integral. This survey is by no means complete, there are
many other techniques you will encounter in later calculus courses.

9.1. EBLO Tricks

One of the problems students have is to make a numerical calculation
more difficult than it really has to be. When we evaluate a definite
integral, we are calculating a number. The method we use primarily
to do this is the Fundamental Theorem of Calculus:∫ b

a

f(x) dx = F (x)|ba = F (b)− F (a)

The arithmetic process on the right-hand side has several properties
you can occasionally exploit. Let us refer to

F (x)|ba = F (b)− F (a) (1)

as EBLO: Evaluation between the limits Operation.
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Homogeneity of EBLO. This property is based on the observation
that if c is a constant then

cF (b)− cF (a) = c(F (b)− F (a))

This equation can be translated using the evaluation notation as

(cF (x))|ba = c(F (x)|ba) (2)

Roughly speaking, when we evaluate an antiderivative between limits,
and the antiderivative has a constant factor embedded in it, then this
constant factor can be factored out of the evaluation.

Verbalization. The evaluation of a constant times a function is that
constant times the evaluation of that function.

Let’s illustrate the utility of this property by way of a simple example.

Example 9.1. (Illustration of Homogeneity Property)

Evaluate
∫ 3

2
x3 dx.
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Additivity Property of EBLO. This property is derived from the
simple observation that if F and G are functions then,

(F (b) +G(b))− (F (a) +G(a)) = (F (b)− F (a)) + (G(b)−G(a))

This is translated in terms of the evaluational notation as

(F (x) +G(x))|ba = F (x)|ba + G(x)|ba . (3)

This can be verbalized by saying that the evaluation of the sum of two
antiderivatives is the sum of the evaluations of each antiderivative.

Verbalization. The evaluation of the sum of two functions is the sum
of the evaluations of each function.

The Additive Property of the evaluation operation can be used from
left-to-right or from right-to-left.

Example 9.2. (Illustration of Additive Property)

Evaluate
∫ 1

−1
x3 − x2 dx.
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Exercise 9.1. Evaluate the integral
∫ 2

−2
x2− 5x5 dx using the prop-

erties of homogeniety and additivity of EBLO.

If you were one of the unfortunates who did not properly execute the
last exercise to maximum efficiency, try another, please.

Exercise 9.2. Evaluate
∫ 3

2
3x3 + 2x2 dx.

Reversing the Order of Evaluation. Observe the following simple
algebraic property:

F (b)− F (a) = −(F (a)− F (b)).

This can be translated into the EBLO notation as follows:

F (x)|ba = − F (x)|ab . (4)

Verbalization. The evaluation between two limits is negative the eval-
uation of the limits in reverse order.
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Here is a simple example to illustrate the minor use of this property.

Example 9.3. Evaluate
∫ 2

1
x−3 dx.

These are just some useful tips that you can use when trying to eval-
uate definite integrals efficiently and without error.

9.2. Definite Integration and Substitution

When you are working a definite integral and the technique of substi-
tution is called for, how do we proceed? There is actually two ways:
(1) Treat the integral as an indefinite integral, perform the substitu-
tion, obtain the antiderivative, then evaluate the antiderivative be-
tween the limits; or, (2) continue with the definite integral, make the
substitution, and change the limits of integral. Changing the limits is
explained below.

First up is an example wherein the technique of substitution is used,
the solution indicates a train of thought you can use.
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Example 9.4. Evaluate
∫ 1

0
x
√
x2 + 3 dx.

Exercise 9.3. Evaluate
∫ 0

−2

x

(x2 + 1)3 dx.

The next example illustrates a style you can adapt. In this approach,
we combine the indefinite integration step with the definite integral,
we set up the substitution, but don’t substitute. Check it out.

Example 9.5. Evaluate
∫ π/4

0
sin(2x) dx.

An alternate approach to finding the indefinite integral as a separate
step, and evaluating it between the specified limits, we can simple
change the limits of integration.

Changing the Limits of Integration.
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Justification: Let F be an antiderivative of f . This means∫
f(u) du = F (u) + C. (5)

Let g be a differentiable function compatible for composition with f ,
then, by the Chain Rule, F (g(x)) is an antiderivative of f(g(x))g′(x),
since the derivative of the former is the latter. This means∫

f(g(x))g′(x) dx = F (g(x)) + C. (6)

As we have already seen, the technique of substitution is the equation
you get when you equate (5) and (6) with the proviso that u = g(x):∫

f(g(x))g′(x) dx =
∫
f(u) du,

where u = g(x).

Now if its a definite integral we want to evaluate, then from (5),∫ b

a

f(g(x))g′(x) dx = F (g(x))|ba = F (g(b))− F (g(a)). (7)
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The trick now is to notice that if we were to take the integral in (6)
and integrate it between certain special limits:∫ g(b)

g(a)
f(u) du = F (u)|g(b)

g(a) = F (g(b))− F (g(a)). (8)

The right-hand sides of (7) and (8) are identical; hence, the left-hand
sides are the same,∫ b

a

f(g(x))g′(x) dx =
∫ g(b)

g(a)
f(u) du

This is the substitution formula with limits.
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Substitution with Limits:
Let f and g be functions. Let u = g(x) and du = g′(x), then∫ b

a

f(g(x))g′(x) dx =
∫ g(b)

g(a)
f(u) du.

This formula is not as difficult as it first seems. The process of setting
up the limits of integration for the new integral is quite natural. Let’s
go to the examples.

Example 9.6. Evaluate
∫ 1

0
x
√
x2 + 3 dx.

Example 9.7. Evaluate
∫ 3

−2
(1− 4x)−5 dx.
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9.3. Taking Advantage of Symmetry

There are occasions in which you can take advantage of any symmetry
properties that the integrand may have over the interval of integra-
tion. In this section we examine two situations of interest: Integrating
an even function over an interval of the form [−a, a ]; Integrating an
odd function over an interval of the form [−a, a ].

Integrating an Even function. A function f defined on a (sym-
metrical) interval [−a, a ] is called an even function if it is true that

f(−x) = f(x) for all x ∈ [−a, a ]. (9)

In the jargon of analytic geometry, we say that f is symmetrical with
respect to the y-axis.

If f is an even function over the interval [−a, a ], then graphically,
this means that the graph of f over the interval [−a, 0 ] is identical
to the graph of f over the interval [ 0, a ]. Intuitively, this would seem
to imply that ∫ 0

−a
f(x) dx =

∫ a

0
f(x) dx.
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This intuitive result does take a bit of effort to argue analytically,
but its proof does represent a nice example of the use of subsitution.
The interested student is invited, therefore, to read the proof of the
following magnification of the obvious.

Theorem 9.1. Let f be an even function over the symmetric interval
[−a, a ], then ∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx. (10)

Proof.
Theorem Notes: The utility of (10) is that it tends to simplify the nu-
merical calculations after you have solve the indefinite integral. Taking
advantage of symmetry this way can be very useful.
Exercise 9.4. Using Theorem 9.1, in particular, equation (10), show
that ∫ 0

−a
f(x) dx =

∫ a

0
f(x) dx
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Example 9.8. Evaluate
∫ 2

−2
x2 dx.

Keys to Success. To use this technique you need to (1) have the ability
to identify even functions, these are functions that are symmetric with
respect to the y-axis (assuming y is the dependent variable); and (2)
have the awareness of the type of interval you are integrating over:
symmetric or not.

Exercise 9.5. Evaluate
∫ 1

−1
x4 − 2x2 − 1 dx.

Exercise 9.6. Evaluate
∫ π/4

−π/4
cos(x) dx.

Exercise 9.7. Evaluate
∫ 1

−1
x6 − x3 dx.



Section 9: Techniques of Evaluating Definite Integrals

Integrating an Odd Function. A function f defined on a (sym-
metrical) interval [−a, a ] is called an odd function if it is true that

f(−x) = −f(x) for all x ∈ [−a, a ]. (11)

In the jargon of analytic geometry, we say that f is symmetrical with
respect to the origin.

If f is an odd function over the interval [−a, a ], then graphically,
this means that the graph of f over the interval [−a, 0 ] is identical
to the graph of f over the interval [ 0, a ], except that one graph is
the reflection of the other with respect to the x-axis. Intuitively, this
would seem to imply that∫ 0

−a
f(x) dx = −

∫ a

0
f(x) dx.

This intuitive result does take a bit of effort to argue analytically,
but its proof does represent a nice example of the use of subsitution.
The interested student is invited, therefore, to read the proof of the
following magnification of the obvious.
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Theorem 9.2. Let f be an odd function over the symmetric interval
[−a, a ], then ∫ a

−a
f(x) dx = 0. (12)

Proof.

Exercise 9.8. Using Theorem 9.2, in particular, equation (12), show
that ∫ 0

−a
f(x) dx = −

∫ a

0
f(x) dx

Example 9.9. Evaluate
∫ 1

−1
x3 dx.

Keys to Success. To use this technique you need to (1) have the ability
to identify odd functions, these are functions that are symmetric with
respect to the origin; and (2) have the awareness of the type of interval
you are integrating over symmetric or not.



Section 9: Techniques of Evaluating Definite Integrals

Example 9.10. Evaluate
∫ 100

−100

cos(x)√
x8 + x4 + x2 + 1

dx.

Example 9.11. (Continue Exercise 9.7) Evaluate
∫ 1

−1
x6 − x3 dx.



Verbalizations

Fundamental Theorem of Calculus:
Let f be integrable over the interval [ a, b ], and suppose there
is an antiderivative F of f over the interval ( a, b ). Then,∫ b

a

f(x) dx = F (b)− F (a).

The value of a definite integral is equal to any antiderivative
evaluated between the limits of integration: the value at the
upper limit minus the value at the lower limit.



Verbalizations

What is a Riemann Sum? A Riemann sum is any sum of the form
n∑
i=1

h(x∗i ) ∆xi,

for some function h. This algebraic formula does not tell the whole
story; it is the end product of a lengthy constructive process.

To completely understand what a Riemann sum is, you must under-
stand the story behind the formula. We have some interval [ a, b ] of
numbers and we subdivide it into n ∈ N subintervals. The length of
the ith subinterval is ∆xi, i = 1, 2, 3, . . . , n. Out of each subinterval,
the ith one, a number is chosen and labeled x∗i .

A Riemann sum then, is the sum of the given function h evaluated at
the chosen points, h(x∗i ), times the width, ∆xi, of the interval from
which the point x∗i was chosen from . . . and Presto! Changeo! we have
Riemann Sum:

n∑
i=1

h(x∗i ) ∆xi.



Solutions to Exercises

7.1. The 5th interval is I5 = [x4, x5 ] and the length of this interval
is

∆x5 = x5 − x4.

Exercise 7.1.
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7.2. Why it’s the length of the interval [ a, b ]. These subintervals
subdivide the interval [ a, b ]; therefore, the total length of the subin-
tervals equals the length of the intervals they span.

For the algebraic fanatics out there

∆x1 + ∆x2 + ∆x3 + · · ·+ ∆xn
= (x1 − x0) + (x2 − x1) + (x3 − x2) + · · ·+ (xn − xn−1)
= −x0 + xn

= xn − x0

= b− a
All numbers in the second line cancel out except the term −x0 and
the term xn. Exercise 7.2.
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7.3. Why it’s the area of the region R. Exercise 7.3.
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7.4. n is the number of rectangles to be constructed, and i is the
index variable that keeps track of the rectangles; i = 4, for example,
corresponds to the 4th rectangle.

The quantity, ∆xi is the length of the base of the ith rectangle, and
f(x∗i ) is the height of same. Finally, f(x∗i )∆xi is the area of the ith

rectangle.

We add up the areas of the n rectangles to obtain
n∑
i=1

f(x∗i )∆xi

to obtain an approximation of the total area under the graph of f .
This creature is generically referred to as a Riemann sum.

Question. Some textbooks always subdivide the interval into n subin-
tervals all of the same width. In our development, we don’t mind that
the subintervals are not of the same width; e.g. ∆x1 may be different
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in value from ∆x2. Why do you suppose we don’t mind having subin-
tervals of possibly different widths? (Formulate an answer within the
context of The Idea of the Solution.)

Exercise 7.4.
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7.5. Just subdivide the interval [ 0, 0.1 ] into 99 subintervals of equal
length, then tack on the interval [ 0.1, 1 ] to make 100 subintervals
partitioning the interval [ 0, 1 ].

You need more details? Say, no. Exercise 7.5.
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7.6. This function is nonnegative over the interval specified; there-
fore, this is the type of situation analyzed in this section.

A =
∫ 5

−1
x4 + x dx

Exercise 7.6.
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7.7. Are you peeking at the answer? Here’s one last hint: Area be-
low the x-axis is considered negative and area above the x-axis is
considered positive.

(a)
∫ b

a

f(x) dx > 0.

Given that you have looked at my formulation for part (a), now revise,
if needed, your interpretation of (b) before looking.

(b)
∫ b

a

f(x) dx < 0.

Finally for part (c). Do you need to reconsider your formulation before
looking?

(c)
∫ b

a

f(x) dx = 0.

Exercise 7.7.
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7.8. The short answer is “Yes.” The slightly longer answer would be
. . . the function

f(x) =
{
x2 x < 1
3− x x ≥ 1

is decreasing on the interval (−2, 0 ), it is increasing on the interval
( 0, 1 ), and it is decreasing again on the interval ( 1, 2 ). Why do I
make these observations? This is how we argue, in written form, that
a function is piecewise monotone. We have argued that the interval of
interest [−2, 2 ] can be partitioned

−2 < 0 < 1 < 2

such that over each subinterval f is monotone. Exercise 7.8.
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7.9. An example of a piecewise continues function that is not piece-
wise monotone:

f(x) =
{
x sin(1/x) x 6= 0
0 x = 0

In fact, this function is everywhere continuous (even at x = 0). Yet,
f is not piecewise monotone on the interval [ 0, 1 ], for example. Do
you see why? Graph the function and compare it with the definition
of piecewise monotone function.
Exercise Notes: Prove that f is continuous at x = 0. Hint : Use squeez-
ing techniques.

Can you give a formal argument that f is not piecewise mono-
tone?

Exercise 7.9.
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7.10. It is easier to imagine such an example than to write it down
mathematically. Here is the result of my imagination.

Define f(0) = 0. For any x ∈ ( 0, 1 ], there is a (unique) natural number
k such that 1/2k < x ≤ 1/2k−1. In this case, define f(x) to be

f(x) =
x

2k−1 .

This is a monotone increasing function on the interval [ 0, 1 ] having
infinitely many discontinuities. The points of discontinuity are

x =
1
2
,

1
4
,

1
8
, . . . ,

1
2k
, . . .

Question. Can you draw the graph of this function? No graphing cal-
culators allowed! Hint: For k = 1, the function f is defined on the
interval ( 1/2, 1 ] by f(x) = x; for k = 2, the function f is defined on
the interval ( 1/4, 1/2 ] by f(x) = x/2, and so on. See if you can graph
it.
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This function is not piecewise continuous since f has infinitely many
discontinuities. Piecewise continuous, as defined above specifies only
finitely many discontinuities.

Question. According to the existence theorem,∫ 1

0
f(x) dx exists and is finite.

Can you calculate the value of this integral? (Hint : The integral repre-
sents the area under the graph. This area can be calculated by certain
already established formula for common geometric objects. Good luck!
DPS) Exercise 7.10.
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7.11. This one is too easy: The index is i; its initial value is 1 and
its terminal or final value is 5. Exercise 7.11.
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7.12. Let’s take each in turn.

1.
∑4
i=1(i2 − 2i)

4∑
i=1

(i2 − 2i) = (12 − 2(1)) + (22 − 2(2)) + (32 − 2(3)) + (42 − 2(4))

= (−1) + 0 + 2 + 8.

2.
∑4
α=1(5α+ 1)

4∑
α=1

(5α+ 1) = (5(1) + 1) + (5(2) + 1) + (5(3) + 1) + (5(4) + 1)

= 6 + 11 + 16 + 21.
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3.
∑5
j=1

j
(j2+2)

5∑
j=1

j

(j2 + 2)
=

1
(12 + 2)

+
2

(22 + 2)
+

3
(32 + 2)

+
4

(42 + 2)
+

5
(52 + 2)

=
1
3

+
1
3

+
3
11

+
2
9

+
5
27
.

4.
∑7
i=4 i

2

7∑
i=4

i2 = 42 + 52 + 62 + 72

= 16 + 25 + 36 + 49

The last expansion hopefully did not throw you for a loop. The initial
value of the index is i = 4. This sum corresponds to equation (15).
The algorithm is valid for this kind of sum. Exercise 7.12.
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7.13. MEDITATE!

What do I refer to when I say “the sum of a sum”?

What do I refer to when I say “the sum of the sums”?
Exercise 7.13.
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7.14. You should have proceeded as follows.

Part 1:

20∑
i=1

(i2 − 2i) =
20∑
i=1

i2 +
20∑
i=1

(−2i) / by (2)

=
20∑
i=1

i2 − 2
20∑
i=1

i / by (1)

= 2,870− 2(210) / by (16)

= 2,420 / by pencil and paper

Part 2: This part is done similarly. I rely on you to complete it cor-
rectly if you have not done so already. Use the above solution as an
example of the technique and style of solution. Pay attention to proper
notation—not only do you want to learn mathematics, but you also
want to become mathematically literate.
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Use the properties of summation explicitly. Write everything down,
just as I have above. Remember, it’s easier for you to write the solution
than for me to type the solution.

Quiz.
∑20
α=1(3α2 − 4α) = ??

(a) 1,750 (b) 6,440 (c) 7,770 (d) 8,330
Exercise 7.14.



Solutions to Exercises (continued)

7.15. The idea is to expand the sums and manipulate them in a
more traditional way.

Proof that
n∑
i=1

cai = c
n∑
i=1

ai.

We begin with the left-hand side and show it is equal to the right-hand
side.

n∑
i=1

cai = (ca1) + (ca2) + · · ·+ (can) / by the algorithm

= c[a1 + a2 + · · ·+ an] / Quiz #1

= c
n∑
i=1

ai / by the algorithm

Quiz #1. Which of the following algebraic laws justifies this step:
(a) associative (b) distributive
(c) commutative (d) n.o.t.
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Proof of
n∑
i=1

(ai + bi) =
n∑
i=1

ai +
n∑
i=1

bi.

We begin with the left-hand side and show it is equal to the right-hand
side.
n∑
i=1

(ai + bi)

= (a1 + b1) + (a2 + b2) + · · ·+ (an + bn) / by the algorithm

= (a1 + a2 + · · ·+ an) + (b1 + b2 + · · ·+ bn) / Quiz #2

=
n∑
i=1

ai +
n∑
i=1

bi / by the algorithm

Quiz #2. Two algebraic laws were used in this step. Your assignment,
should you decide to accept it, is to name these two.
(a) distributive and associative (b) distributive and commutative
(c) associative and commutative (d) n.o.t.
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Exercise Notes: After you have studied the proofs of these two proper-
ties, I think you’ll agree with me that they are nothing more then com-
monly known properties of addition and multiplication. When written
in the form of the sigma notation they look different and strange, but,
nevertheless, they are very simple properties of our number system.

It would be useful when you use these properties to visualize
in your mind the kinds of arithmetic manipulations you are actually
doing.

Exercise 7.15.
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7.16. Just follow the summation formulas:

20∑
i=1

3 = 20(3) = 60 / from (1)

33∑
j=1

j =
33(34)

2
= 561 / from (2)

15∑
k=1

k2 =
15(16)(31)

6
= 1,240 / from (3)

20∑
α=1

α3 =
[

20(21)
2

]2

= 44,100. / from (4)

Exercise 7.16.
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7.17. The summation notation provides a formula for computing the
numbers involved in the sum.

1.
20∑
i=1

3 = 3 + 3 + 3 + 3 + · · ·+ 3 = 60.

2.
33∑
j=1

j = 1 + 2 + 3 + 4 + · · ·+ 33 = 561.

3.
15∑
k=1

k2 = 12 + 22 + 32 + 42 + · · ·+ 152 = 1,240.

4.
20∑
α=1

α3 = 13 + 23 + 33 + 43 + · · ·+ 203 = 44,100.

Exercise 7.17.
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7.18. You would notice that in the sum

a1 + a2 + a3 + a4 + · · ·+ an

all the numbers have the same form: ai for some number i. And this
number i, the index, varies from i = 1 to i = n. So write for the
monster the notation:

a1 + a2 + a3 + a4 + · · ·+ an =
n∑
i=1

ai.

Or, just to confuse the poor monster, maybe write

a1 + a2 + a3 + a4 + · · ·+ an =
n∑

dps=1

adps.

Exercise 7.18.
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7.19.
Exercise 7.19.
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7.20. Solution to 1: We use equation(18)
40∑
i=20

i =
40∑
i=1

i−
19∑
i=1

i

=
40(41)

2
− 19(20)

2
/ Sum formula (2)

= 630

Add up the number by calculator if you don’t believe me!

Solution to 2: Having seen the solution to (1), I’ll let you finish off
(2). Here are some questions to guide your reasoning.

20∑
j=12

j2 =
20∑
j=1

j2 −
??∑
j=1

j2.

Quiz What is the correct value of ?? in the above equation?
(a) 11 (b) 12 (c) 13 (d) n.o.t.
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Work out the answer, then check it against the alternatives. Passing
score is 1 out of 1.

Quiz Which of the following is equal to
20∑
j=12

j2?

(a) 3,140 (b) 2, 134 (c) 2,364 (d) n.o.t.

Solution to 3: Solve the problem using the techniques illustrated for
(1). Check you answer below. You will jump the complete solution
when you click on the right answer. Do the problem first.

Quiz Which of the following is equal to
10∑
k=5

k3?

(a) 2,875 (b) 2,925 (c) 2,921 (d) n.o.t.
Exercise 7.20.
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7.21. Did you write
n∑
i=1

√
i+ i2? Exercise 7.21.
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7.22. Ans:
n∑
i=1

(1 + f(i))3. Exercise 7.22.
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7.23. Ans:
k∑
j=1

sin(f(xj)).

Did I throw you off with the different letters k and j

You may have written:
∑k
i=1 sin(f(xi)), which is right, or you could

have written
∑n
i=1 sin(f(xi)), which is technically wrong since I spec-

ified that the last number is k not n. Did I trick you? Exercise 7.23.
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7.24. If we have an interval of length 7 units and want to partition
it into 2 equal subintervals, the length of each subinterval must be
7/2 = 3.5 units.

If we have an interval of length 6 units and we want to divide it into
3 equal parts, the length of each of the three parts will be 6/3 = 2
units.

In just the same way, if we have an interval, [ a, b ], of length b−a and
we want to divide this length into n subintervals of the same length,
the width of each of these subintervals must necessarily be (b− a)/n.

Exercise 7.24.
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7.25. We use the formula (19), here [ a, b ] = [ 1.4 ] and n = 6:

∆x =
b− a
n

=
4− 1

6
=

1
2
.

That is, the common width of these 6 intervals will be ∆x = 1/2.
Exercise 7.25.
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7.26. Each of the partition points are ∆x = (b− a)/n apart. This is
the “critical” observation. There are a couple of methods that can be
used.
Method 1: x0 = a

x1 = x0 + ∆x
x2 = x1 + ∆x
x3 = x2 + ∆x
...

...
...

xi = xi−1 + ∆x
...

...
...

xn = xn−1 + ∆x

This is a nice computation method of calculating the partition points
one at a time. The other method is just a general formula for the
calculation of these points.

Method 2: For each i, the value of the ith node is

xi = x0 + i∆x, i = 1, 2, 3, . . . , n. (A-1)
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Question. Do you see where this formula comes from? Do not leave
until you understand ! Exercise 7.26.
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7.27. The interval is
[ a, b ] = [ 1, 4 ].

we want to subdivide this interval into n = 6 subintervals of equal
length. That common length is

∆x =
b− a
n

=
4− 1

6
= .5

The partition points or nodes can easily be calculated using Method 1:
x0 = a = 1
x1 = x0 + ∆x = 1.0 + .5 = 1.5
x2 = x1 + ∆x = 1.5 + .5 = 2
x3 = x2 + ∆x = 2.0 + .5 = 2.5
x4 = x3 + ∆x = 2.5 + .5 = 3
x5 = x4 + ∆x = 3.0 + .5 = 3.5
x6 = x5 + ∆x = 3.5 + .5 = 4

The direct formula, Method2, can be used as well. For example, if we
wanted to compute x3 we obtain from (A-1):

x3 = x0 + 3 ∆x = 1 + 3(.5) = 2.5
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Exercise 7.27.



Solutions to Exercises (continued)

7.28. The value of the common width of these 8 intervals is

∆x =
b− a
n

=
5− (−1)

8
=

6
8

=
3
4

Using the direct formula, we obtain,

xi = x0 + i∆x = −1 + i
3
4
, i = 1, 2, 3, . . . , 8

You can evaluate this formula for the different values of the index i
to obtain the numerical results.

Quiz. What is the value of x5, the fifth node in the partition?
(a) 2.0 (b) 2.75 (c) 3.5 (d) 4.25

Exercise 7.28.
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7.29. YOU are supposed to help ME! As I am rather self-reliant, I’ll
help myself.

The left-hand endpoint is obtained from the formula

xi = 4 +
4i
5

i = 0, 1, 2, 3, . . . , 20

by putting i = 0. Using my hand-held graphing calculator, I obtain

a = x0 = 4.

You can obtain the right-hand endpoint is obtained from the above
formula by putting i = 20. Thus,

b = x20 = 4 +
4(20)

5
= 20

Answer : The interval is [ 4, 20 ] .

Thank you! DPS Exercise 7.29.
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7.30. Here is an outline of what you should have done; your solution
should have been as complete as Example 7.7

Begin by subdividing the interval [ a, b ] = [ 1, 4 ] into n equal subin-
tervals.

Step 1: Calculate ∆x.

∆x =
b− a
n

=
3
n

Step 2: Calculate the partition points (using the techniques of Exer-
cise 7.26 or Exercise 7.27).

Method 2 of 7.26:

xi = x0 + i∆x, i = 1, 2, 3, . . . , n.

x0 = 1

x1 = 1 + (1)(3/n) = 1 + 2/n

x2 = 1 + (2)(3/n) = 1 + 6/n
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x3 = 1 + (3)(3/n) = 1 + 9/n

x4 = 1 + (4)(3/n) = 1 + 12/n

...
...

...

xi = 1 + (i)(3/n) = 1 + 3i/n (A-2)

...
...

...

xn = 1 + (n)(3/n) = 1 + 3 = 4 . . . and done!

Step 3: Choose the intermediate points x∗i : Say the right-hand end-
points of each interval. From (A-2) we obtain:

x∗i = xi = 1 +
3i
n

i = 1, 2, 3, . . . , n.

(Recall: the ith interval is [xi−1, xi ] and so the right-hand endpoint
of this interval is xi.)

Summary. x∗i = 1 +
3i
n

and ∆x =
2
n

.
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Step 4: Calculate Riemann Sums:

Sn =
n∑
i=1

f(x∗i ) ∆x

=
n∑
i=1

f(1 + 3i/n)
3
n

=
n∑
i=1

5
3
n

=
n∑
i=1

15
n

= (n)
15
n

/ by (1) above

= 15

Thus, the nth Riemann Sum is

Sn = 15. (A-3)
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Consequently, the final step is

Step 5: Calculate the limit of the Riemann sum approximation (A-3):∫ 4

1
5 dx = lim

n→∞Sn = lim
n→∞ 15 = 15,

or, ∫ 4

1
5 dx = 15.

Once again we obtain the expected result. Exercise 7.30.
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7.31. Begin by subdividing the interval [ a, b ] = [ 0, b ] into n equal
subintervals.

Step 1: Calculate ∆x.

∆x =
b− a
n

=
b

n

Step 2: Calculate the partition points (using the techniques of Exer-
cise 7.26 or Exercise 7.27).

Method 2 of 7.26:

xi = x0 + i∆x, i = 1, 2, 3, . . . , n.

x0 = 0

x1 = (1)(b/n) = b/n

x2 = (2)(b/n) = 2b/n

x3 = (3)(b/n) = 3b/n
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x4 = (4)(b/n) = 4b/n

...
...

...

xi = (i)(b/n) = ib/n (A-4)

...
...

...

xn = (n)(b/n) = b . . . and done!

Step 3: Choose the intermediate points x∗i : Say the right-hand end-
points of each interval. From (A-4) we obtain:

x∗i = xi =
ib

n
i = 1, 2, 3, . . . , n.

Summary. x∗i =
ib

n
and ∆x =

b

n
.

Recall we are integrating the function f(x) = h.
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Step 4: Calculate Riemann Sums:

Sn =
n∑
i=1

f(x∗i ) ∆x

=
n∑
i=1

f(ib/n)
b

n

=
n∑
i=1

h
b

n

=
n∑
i=1

bh

n

= (n)
bh

n
/ by (1) above

= bh

Thus, the nth Riemann Sum is

Sn = bh. (A-5)
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Consequently, the final step is

Step 5: Calculate the limit of the Riemann sum approximation (A-5):∫ b

0
h dx = lim

n→∞Sn = lim
n→∞ bh = bh,

or, ∫ b

0
h dx = bh.

Once again we obtain the expected result—that’s more on that par-
ticular construction than you really wanted to see. Exercise 7.31.
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7.32. The function f that we are integrating is f(x) = 4x. This func-
tion is continuous over the interval [ 0, 5 ]; therefore, by the Existence
Theorem, Theorem 7.4, the function f(x) = 4x is integrable over the
interval [ 0, 5 ]; that is,∫ 5

0
4x dxexists and is finite.

That being the case, from the constructive definition, no matter what
the choice of the intermediate points, x∗i , the corresponding Riemann
sums always tend to the same value (the value of the integral).

If we choose the intermediate points to be the right-hand endpoints,
since f is integrable, the corresponding Riemann sums must tend to
the value of the integral. We showed in Example 7.8 that those
Riemann sums tend to 50. Therefore 50 must be the value of the
integral ∫ 5

0
4x dx = 50,
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and any other choice of intermediate points would yield Riemann sums
that would necessarily have to tend to 50 as well.

That clear? Exercise 7.32.
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7.33. If you replace 4 by −4 in the demonstration given in Exam-
ple 7.8, and follow the change in the calculations, you will see that∫ 5

0
−4x dx = −50

Or, writing it differently to suggest a general principle,∫ 5

0
−4x dx = −

∫ 5

0
4x dx

Exercise 7.33.
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7.34. Begin by subdividing the interval [ a, b ] = [ 0, 2 ] into n equal
subintervals.

Step 1: Calculate ∆x.

∆x =
b− a
n

=
2
n

Step 2: Calculate the partition points (using the techniques of Exer-
cise 7.26 or Exercise 7.27).

Method 2 of 7.26:

xi = x0 + i∆x, i = 1, 2, 3, . . . , n.

x0 = 0

x1 = (1)(2/n) = 2/n

x2 = (2)(2/n) = 4/n

x3 = (3)(2/n) = 6/n
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x4 = (4)(2/n) = 8/n

...
...

...

xi = (i)(2/n) = 2i/n (A-6)

...
...

...

xn = (n)(2/n) = 2 . . . and done!

Step 3: Choose the intermediate points x∗i : Say the right-hand end-
points of each interval. From (A-6) we obtain:

x∗i = xi =
2i
n

i = 1, 2, 3, . . . , n.

Summary. x∗i =
2i
n

and ∆x =
2
n

.

Recall we are integrating the function f(x) = 3x+ 1; consequently,

f(2i/n) = 3
2i
n

+ 1 =
6i
n

+ 1. (A-7)
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This calculation is needed in the next step.

Step 4: Calculate Riemann Sums:

Sn =
n∑
i=1

f(x∗i ) ∆x

=
n∑
i=1

f(2i/n)
2
n

=
n∑
i=1

(
6i
n

+ 1
)

2
n

/ from (A-7)

=
n∑
i=1

(
12i
n2 +

2
n

)

=
n∑
i=1

12i
n2 +

n∑
i=1

2
n

=
12
n2

n∑
i=1

i+
n∑
i=1

2
n

/ by (2)

=
12
n2

n(n+ 1)
2

+ (n)
2
n

/ by (2) & (1)
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= 6
n+ 1
n

+ 2

Thus, the nth Riemann Sum is

Sn = 6
n+ 1
n

+ 2. (A-8)

Consequently, the final step is

Step 5: Calculate the limit of the Riemann sum approximation (A-8):∫ 5

0
4x dx = lim

n→∞Sn

= lim
n→∞ 6

n+ 1
n

+ 2

= 6 lim
n→∞

(
1 +

1
n

)
+ lim
n→∞ 2

= 6 + 2
= 8

or,
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∫ 2

0
3x+ 1 dx = 8.

Example Notes: The graph of f , 0 ≤ x ≤ 2, is a straight line going
from the point ( 0, 1 ) to the point ( 2, 7 ). If you draw this graph and
look at the region under the graph and above the x-axis, you will se
a trapezoid. The area of a trapezoid is

A =
1
2

(h1 + h2)b,

where h1, and h2 are the two altitudes of the trapezoid and b is the
base of the trapezoid. In our case h1 = f(0) = 1, h2 = f(2) = 7, and
b = 2. According to the trapezoid formula,

A =
1
2

(1 + 7)(2) = 8,

that checks!
Exercise 7.34.
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7.35. Subdivide the interval [ a, b ] = [−1, 2 ] into n equal subinter-
vals.

Step 1: Calculate ∆x.

∆x =
b− a
n

=
3
n

Step 2: Calculate the partition points (using the techniques of Exer-
cise 7.26 or Exercise 7.27).

Method 2 of 7.26:

xi = x0 + i∆x, i = 1, 2, 3, . . . , n.

x0 = −1

x1 = −1 + (1)(3/n) = −1 + 3/n

x2 = −1 + (2)(3/n) = −1 + 6/n

x3 = −1 + (3)(3/n) = −1 + 9/n



Solutions to Exercises (continued)

x4 = −1 + (4)(3/n) = −1 + 12/n

...
...

...

xi = −1 + (i)(3/n) = −1 + 3i/n (A-9)

...
...

...

xn = −1 + (n)(3/n) = 2 . . . and done!

Step 3: Choose the intermediate points x∗i : Say the right-hand end-
points of each interval. From (A-9) we obtain:

x∗i = xi = −1 +
3i
n

i = 1, 2, 3, . . . , n.

Summary. x∗i = −1 +
3i
n

and ∆x =
3
n

.
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Recall we are integrating the function f(x) = 3x2− 2x; consequently,

f(−1 + 3i/n) = 3(−1 + 3i/n)2 − 2(−1 + 3i/n)

= 3
(

1− 6i
n

+
9i2

n2

)
+ 2− 6i

n

= 5− 24i
n

+
27i2

n2 (A-10)

This calculation is needed in the next step.

Step 4: Calculate Riemann Sums:

Sn =
n∑
i=1

f(x∗i ) ∆x

=
n∑
i=1

f(−1 + 3i/n)
3
n

=
n∑
i=1

(
5− 24i

n
+

27i2

n2

)
3
n

/ from (A-10)
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=
n∑
i=1

15
n
−

n∑
i=1

72i
n2 +

n∑
i=1

81i2

n3

=
n∑
i=1

15
n
− 72
n2

n∑
i=1

i+
81
n3

n∑
i=1

i2 / by (2)

We now invoke the summation formulas:

Sn = (n)
15
n
− 72
n2

n(n+ 1)
2

+
81
n3

n(n+ 1)(2n+ 1)
6

/ by
{

(1), (2)
and (3)

= 15− 36
n+ 1
n

+
27
2
n+ 1
n

2n+ 1
n

Thus, the nth Riemann Sum is

Sn = 15− 36
n+ 1
n

+
27
2
n+ 1
n

2n+ 1
n

. (A-11)

Consequently, the final step is
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Step 5: Calculate the limit of the Riemann sum approximation (A-11):∫ 2

−1
3x2 − 2x dx = lim

n→∞Sn

= lim
n→∞

(
15− 36

n+ 1
n

+
27
2
n+ 1
n

2n+ 1
n

)
= 15− 36 lim

n→∞
n+ 1
n

+
27
2

lim
n→∞

2n+ 1
n

= 15− 36 +
27
2

(2)

= 6
or, ∫ 2

−1
3x2 − 2x dx = 6.

Exercise 7.35.
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8.1. Let F be any antiderivative of f , then F + C is also an anti-
derivative of f . Thus,∫ b

a

f(x) dx = (F (b) + C)− (F (a) + C)

= F (b) + C − F (a)− C
= F (b)− F (a).

The inclusion of the constant C did not contribute to the value of
the integral, all it did was create a more complicated expression to
evaluate. Exercise 8.1.
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9.1. Routine: ∫ 2

−2
x2 − 5x5 dx

=
(

1
3
x3 − 5

6
x6
)∣∣∣∣2
−2

=
1
3

(8 + 8)− 5
6

(0)

=
16
3
.

In doing this problem, I hope you concentrated on using the properties
to shorten the numerical calculations as well as using good techniques!

Exercise 9.1.
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9.2. Hopefully, you are getting the hang of it.∫ 3

2
3x3 + 2x2 dx

=
(

3
4
x4 +

2
3
x3
)∣∣∣∣3

2

=
3
4

(81− 16) +
2
3

(27− 8)

=
3
4

65 +
2
3

19

=
793
12

Exercise 9.2.
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9.3. First, solve the associate indefinite integral : We will be applying
the Power Rule, so we put u = x2 + 1, and du = 2x dx.

Calculate Indefinite Integral :∫
x

(x2 + 1)3 dx =
∫

(x2 + 1)−3 x dx / prepare for Power

=
1
2

∫
(x2 + 1)−3 2x dx / apply fudge factor

=
1
2

∫
u−3 du / substitution

=
1
2
u−2

−2
+ C

= −1
4

(x2 + 1)−2 + C
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Calculate Definite Integral :∫
x

(x2 + 1)3 dx = −1
4

(x2 + 1)−2
∣∣0
−2

= −1
4

(5−2 − 1) / EBLO Tricks

= −1
4

(
−24

25

)
=

6
25
.

Hope that you made the same moves on this one. Exercise 9.3.
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9.4. We use the Additive Property of the limits of integration.∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx / (10)

but, ∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx+

∫ a

0
f(x) dx / Additive Prop.

therefore, ∫ 0

−a
f(x) dx+

∫ a

0
f(x) dx = 2

∫ a

0
f(x) dx (A-12)

Solve the equation (A-12) algebraically for
∫ a

0
f(x) dx to obtain,

∫ a

0
f(x) dx =

∫ 0

−a
f(x) dx.

These techniques were contained in the proof of Theorem 9.1. One of
the uses of proof construction is that they, sometimes, reveal valuable
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techniques not normally seen in ordinary problem solving (in Calculus.
Exercise 9.4.
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9.5. We are indeed integrating an even function over a symmetric
interval; therefore we can take advantage of symmetry — if we wish.∫ 1

−1
x4 − 2x2 − 1 dx = 2

∫ 1

0
x4 − 2x2 − 1 dx

= 2
x5

5
− 2x3

3
− x
∣∣∣∣1
0

= 2
(

1
5
− 2

3
− 1
)

= −44
15
.

Exercise 9.5.
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9.6. We are indeed integrating an even function over a symmetric
interval; therefore we can take advantage of symmetry — if we wish.
One of the properties of the cosine function is that cos(−x) = cos(x).
This is precisely the definition of an even function.∫ π/4

−π/4
cos(x) dx = 2

∫ π/4

0
cos(x) dx

= 2 sin(x)|π/40

= 2 sin(π4 )

=
√

2

Exercise 9.6.
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9.7. I hope you did not try to use the symmetry property (10),
because the function is not even, even though we are integrating over
a symmetric interval. If you went merrily on your way, doubling the
integral and integrating from 0 to 1, then you have not paid attention
to the Keys to Success.

The Problem: ∫ 1

−1
x6 − x3 dx.

We can solve this (simple) integral in the usual way. But here is an
idea: The first term is even and so we can take advantage of its sym-
metry.
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Evalulation: ∫ 1

−1
x6 − x3 dx =

∫ 1

−1
x6 dx−

∫ 1

−1
x3 dx

= 2
∫ 1

0
x6 dx−

∫ 1

−1
x3 dx

= 2
1
7
x7
∣∣1
0 −

1
4
x4
∣∣1
−1

=
2
7
− 1

4
(1− (−1)4)

=
2
7
− 1

4
(1− 1)

=
2
7
.

This calculation was stretched out a bit. After the discussion on odd
functions, this calculation can be reduced considerably. See the exam-
ple below. Exercise 9.7.



Solutions to Exercises (continued)

9.8. We use the Additive Property of the limits of integration.∫ a

−a
f(x) dx = 0 / (12)

but, ∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx+

∫ a

0
f(x) dx / Additive Prop.

therefore, ∫ 0

−a
f(x) dx+

∫ a

0
f(x) dx = 0.

Now, solve algebraically the equation∫ 0

−a
f(x) dx+

∫ a

0
f(x) dx = 0



for
∫ a

0
f(x) dx to obtain,∫ a

0
f(x) dx = −

∫ 0

−a
f(x) dx.

These techniques were contained in the proof of Theorem 9.2. One of
the uses of proof construction is that they, sometimes, reveal valuable
techniques not normally seen in ordinary problem solving (in Calculus.

Exercise 9.8.



Solutions to Examples

7.1. The given function is nonnegative over the given interval; there-
fore, by the Solution to the Fundamental Problem, the area under the
graph is given by

A =
∫ 1

0
x2 dx

Example 7.1.



Solutions to Examples (continued)

7.2. An examination of the function will yield the fact that f(x) ≥ 0
over the interval [ 1, 4 ]; therefore,

A =
∫ 4

1
3x3 + x dx

Example 7.2.
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7.3. The reasoning would go as follows.

The function is not continuous at x = 1. Indeed,

lim
x→1−

f(x) = lim
x→1−

x3 = 1

lim
x→1+

f(x) = lim
x→1+

3− x = 2

Thus,
lim
x→1−

f(x) = 1 6= 2 = lim
x→1+

f(x),

that is, the left-hand limit does not equal the right-hand limit; there-
fore, the limit does not exist and f cannot be continuous there.

Is f discontinuous at any other point in the interval [−2, 2 ]? We
reason as follows.

On the interval [−2, 1 ), f(x) = x2. Over this interval, f is a second-
degree polynomial function. A polynomial function is continuous over
every interval, so we conclude that f is continuous over the interval
[−2, 1 ).
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On the interval ( 1, 2 ], f(x) = 3 − x. Over this interval, f is a first-
degree polynomial function. A polynomial function is continuous over
every interval, so we conclude that f is continuous over the interval
( 1, 2 ].

We have argued that f has one and only one discontinuity; hence, f
is piecewise continuous. Example 7.3.
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7.4. For item (1), we are summing a constant. This calls for the use
of formula (1). Here, n = 40 and c = 2; thus,

n∑
i=1

c = nc / the formula

40∑
i=1

2 = (40)2 = 80, / the problem, take n = 40 & c = 2.

All we are doing here is adding 2 together with itself 40 times.

Solution to (2): This is a direct application of formula (4) above:

n∑
i=1

i =
n(n+ 1)

2
/ the formula

20∑
i=1

i =
20(21)

2
/ the problem. Take n = 20

= 210
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Solution to (3): This is a direct application of formula (3) above:

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
/ the formula

10∑
i=1

i2 =
20(21)(41)

6
/ the problem. Take n = 10

= 2,870

Solution to (4): This is a direct application of formula (4) above:

n∑
i=1

i3 =
[
n(n+ 1)

2

]2

/ the formula

15∑
i=1

i3 =
[

15(16)
2

]2

/ the problem. Take n = 15

= 14,400

Example 7.4.
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7.5. These problems are similar to Exercise 7.14, but now we have
the summation formulas to help us.

Solution to 1:

10∑
i=1

i(3i+ 2) =
10∑
i=1

(3i2 + 2i)

= 3
10∑
i=1

i2 + 2
10∑
i=1

i / properties of summation

= 3
10(11)(21)

6
+ 2

10(11)
2

/ sum formula: (3) & (2)

= 1,115 + 110 = 1, 225
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Solution to 2:

15∑
j=1

(4j3 − 9j2 + 2)

= 4
15∑
j=1

j3 − 9
15∑
j=1

j2 +
15∑
j=1

2 / properties of summation

= 4
[

15(16)
2

]2

− 9
15(16)

2
+ (15)2 / sum formulas: (1), (3), (4)

= 13, 350 / calculator!

The final part is an abstract version of the others. Rather than having
a definite numerical value as the upper limit of the index, we have a
symbolic upper limit n.
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Solution to 3:
n∑
k=1

(3k2 − k)

= 3
n∑
k=1

k2 −
n∑
k=1

k / properties of summation

= 3
n(n+ 1)(2n+ 1)

6
− n(n+ 1)

2
/ sum formulas: (2)–(3)

=
n(n+ 1)

2
(2n+ 1− 1) / cancel and factor!

=
n(n+ 1)

2
(2n) / subtract!

= n2(n+ 1) / cancel and combine!

That looks pretty good! Example 7.5.
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7.6. The pattern is very strong—looks like powers of 2 to me. Here
is the series:

1 + 2 + 22 + 23 + 24 + · · ·+ 2n (S-1)

First Try : An obvious choice is
n∑
i=1

2i, but that would not expand to

(S-1). By the algorithm for expanding the sigma notation, we have
n∑
i=1

2i = 21 + 22 + 23 + 24 + · · ·+ 2n.

The first term of (S-1) is missing.

A Correct Try : The missing term is 1 which equals 20, to write 1 as
a power of 2. Thus,

n∑
i=0

2i = 20 + 21 + 22 + 23 + 24 + · · ·+ 2n

= 1 + 2 + 22 + 23 + · · ·+ 2n



Solutions to Examples (continued)

(Yes, we can start the index at i = 0.)

Another Try : Another way or writing (S-1) would be
n+1∑
i=1

2i−1 = 21−1 + 22−1 + 23−1 + 24−1 + · · ·+ 2(n+1)−1

= 1 + 2 + 22 + 23 + · · ·+ 2n

There is infinitely many ways of expressing any given sum using the
sigma notation. Sometimes we need to start the index at 1, so my first
correct solution would not do. The second correct solution would do
the trick.

Question. How would you set up the sigma notation if you were re-
quired to start at i = 3?

Example 7.6.
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7.7. Begin by subdividing the interval [ a, b ] = [ 0, 2 ] into n equal
subintervals.

Step 1: The first task is to calculate the common length of these
intervals:

∆x =
b− a
n

=
2
n

(S-2)

Step 2: The next problem is to calculate the partition points; the
techniques brought out earlier in Exercise 7.26 and Exercise 7.27
will be useful here.

I’ll use Method 2 of 7.26:

xi = x0 + i∆x, i = 1, 2, 3, . . . , n.

x0 = 0

x1 = (1)(2/n) = 2/n

x2 = (2)(2/n) = 4/n
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x3 = (3)(2/n) = 6/n

x4 = (4)(2/n) = 8/n

...
...

...

xi = (i)(2/n) = 2i/n

...
...

...

xn = (n)(2/n) = 2 . . . and done!

Step 3: The next step in the constructive process is to choose the
intermediate points x∗i from each of the intervals. In this case, I’ll
choose the intermediate points to be the right-hand endpoint of each
interval; i.e. choose

x∗i = xi =
2i
n

i = 1, 2, 3, . . . , n.

Summary. x∗i =
2i
n

and ∆x =
2
n

.
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Step 4: This is the information we need to form the Riemann Sums.
The next step in the process is to build the Riemann Sums:

Sn =
n∑
i=1

f(x∗i ) ∆x

=
n∑
i=1

f(2i/n)
2
n

=
n∑
i=1

3
2
n

=
n∑
i=1

6
n

= (n)
6
n

/ by (1) above

= 6



Solutions to Examples (continued)

Thus, the nth Riemann Sum is

Sn = 6. (S-3)

Consequently, the final step is

Step 5: Calculate the limit of the Riemann sum approximation (S-3):∫ 2

0
3 dx = lim

n→∞Sn = lim
n→∞ 6 = 6,

or, ∫ 2

0
3 dx = 6.

Example Notes: Normally the value of the nth Riemann Sum will
depend on n. Not in this case. The nth Riemann Sum in (S-3) does not
depend on n. This is because we are using rectangles to approximate
a rectangular region; naturally, the approximation turns out to be
exact ! The value of Sn = 6 is actually the exact area under the curve.
Subsequent examples and exercises will be more interesting in this
regard.



Solutions to Examples (continued)

This example shows that the definite integral yields the expected
answer.

Example 7.7.
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7.8. Begin by subdividing the interval [ a, b ] = [ 0, 5 ] into n equal
subintervals.

Step 1: Calculate ∆x.

∆x =
b− a
n

=
5
n

Step 2: Calculate the partition points (using the techniques of Exer-
cise 7.26 or Exercise 7.27).

Method 2 of 7.26:

xi = x0 + i∆x, i = 1, 2, 3, . . . , n.

x0 = 0

x1 = (1)(5/n) = 5/n

x2 = (2)(5/n) = 10/n

x3 = (3)(5/n) = 15/n
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x4 = (4)(5/n) = 20/n

...
...

...

xi = (i)(5/n) = 5i/n (S-4)

...
...

...

xn = (n)(5/n) = 5 . . . and done!

Step 3: Choose the intermediate points x∗i : Say the right-hand end-
points of each interval. From (S-4) we obtain:

x∗i = xi =
5i
n

i = 1, 2, 3, . . . , n.

Summary. x∗i =
5i
n

and ∆x =
5
n

.

Recall we are integrating the function f(x) = 4x; consequently,

f(5i/n) = 4
5i
n

=
20i
n
. (S-5)
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This calculation is needed in the next step.

Step 4: Calculate Riemann Sums:

Sn =
n∑
i=1

f(x∗i ) ∆x

=
n∑
i=1

f(4i/n)
5
n

=
n∑
i=1

20i
n

5
n

/ from (S-5)

=
n∑
i=1

100i
n2

=
100
n2

n∑
i=1

i =
100
n2

n(n+ 1)
2

/ by (2) above

=
50(n+ 1)

n
.
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Thus, the nth Riemann Sum is

Sn =
50(n+ 1)

n
. (S-6)

Note that the value of the nth Riemann sum does depend on the
number of subdivisions (unlike the simpler previous examples and
exercises).

Consequently, the final step is

Step 5: Calculate the limit of the Riemann sum approximation (S-6):∫ 5

0
4x dx = lim

n→∞Sn

= lim
n→∞

50(n+ 1)
n

= 50 lim
n→∞

(
1 +

1
n

)
= 50

or,
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∫ 5

0
4x dx = 50.

Example Notes: This is precisely the result we were looking for. The
area of the triangular region is A = 1

2bh; in this case, b = 5 and
h = 20. Thus, by the formula for the area of a triangle, the area of
the region should be A = 1

2 (5)(20) = 50—same result, Hurray!
Example 7.8.
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8.1. This problem represents a typical calculation.∫ 3

2
x2 dx =

x3

3

∣∣∣∣3
2

/ Power Rule

=
33

3
− 23

3

=
19
3
.

Since the function f(x) = x2 is nonnegative over the interval [ 2, 3 ],
the interpretation of the integral∫ 3

2
x2 dx =

19
3
,

is that it is the area under the graph of f . Example 8.1.
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8.2. We proceed as follows:∫ 4

0
x
√
x dx =

∫ 4

0
x3/2 dx

=
2
5
x5/2

∣∣∣4
0

/ Power Rule

=
2
5

(45/2 − 0)

=
2
5

(32)

=
64
5

Since the function f(x) = x
√
x is nonnegative over the interval [ 0, 4 ],

the value of the integral can be interpreted as the area under the
graph of f over the interval [ 0, 4 ]. Example 8.2.
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8.3. We use standard procedures.∫ −1

−2
x4 − 2x dx

=
1
5
x5
∣∣−1
−2 − x2

∣∣−1
−2 / Power Rule

=
1
5
(
(−1)5 − (−2)5)− ((−1)2 − (−2)2)

/ Eval. Rule

=
1
5

((−1)− (−32))− (1− 4)

=
31
5

+ 3

=
46
5

= 9
1
5
.

The value of this integral is interpreted as the area under the graph
of f . Example 8.3.
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9.1. We do this two ways the first way, not using the Homogeneity
Property, the second method using it.

Method 1 : ∫ 3

2
x3 dx =

x4

4

∣∣∣∣3
2

=
(

34

4
− 24

4

)
=
(

81
4
− 16

4

)
=

65
4

That didn’t seem too bad, but we carried the numerical constant 1/4
throughout our calculation: I had to type 4 in the denominator of
every expression throughout the development of the answer.



Solutions to Examples (continued)

Method 2 : ∫ 3

2
x3 dx =

x4

4

∣∣∣∣3
2

=
1
4
x4
∣∣3
2 / EBLO Homogen.

=
1
4

(34 − 24)

=
65
4

Here, I factored the multiplicative constant 1/4 out and just evalu-
ated the remaining functional part. I didn’t figure the 1/4 into every
expression, as a result, less typing, and a cleaner, easier calculation.

Example 9.1.
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9.2. Let’s again illustrate two ways. The indefinite integral is∫
x3 − x2 dx =

1
4
x4 − 1

3
x3 + C.
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Method 1 : ∫ 1

−1
x3 − x2 dx

=
1
4
x4 − 1

3
x3
∣∣∣∣1
−1

=
(

1
4
− 1

3

)
−
(

1
4

(−1)4 − 1
3

(−1)4
)

= − 1
12
−
(

1
4

+
1
3

)
= − 1

12
− 7

12

= − 8
12

= −2
3
.
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Method 2 :∫ 1

−1
x3 − x2 dx

=
1
4
x4 − 1

3
x3
∣∣∣∣1
−1

=
1
4

(1− (−1)4)− 1
3

(1− (−1)3) / Homogen. & Additive

= −2
3
.

Example Notes: In the second method, I evaluated each term between
the limits—enabling me to combine similar expressions immediately.
It also allowed me to factor out the constants 1/4 and 1/3 that I
wasn’t able to do in Method 1. Overall, in this problem at least, using
the properties of the evaluation rule made the numerical calculations
simpler, cleaner, and less prone to error.
You’ll have to judge for yourself. At least try using these tricks your-
self.
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Example 9.2.
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9.3. We are integrating ∫ 2

1
x−3 dx,

the simple power rule will suffice.∫ 2

1
x−3 dx =

x−2

−2

∣∣∣∣2
1

= −1
2
x−2

∣∣2
1 / Homogen. of EBLO

=
1
2
x−2

∣∣1
2 / Reverse of EBLO

=
1
2

(1− 2−2)

=
1
2

3
4

=
3
8

Where, we have reversed the order of evaluation mostly in order to
get rid of the negative sign at the beginning of the expression. The
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integral, I knew, would be evaluating to a positive number, the neg-
ative sign is a bit out of place — so I got rid of it by reversing the
order of evaluation.

This little trick can be used to avoid negative sign that have the
potential of causing the neophyte algebra student to error — we don’t
want that to happen! Example 9.3.
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9.4. First we must decide how to solve the integral∫ 1

0
x
√
x2 + 3 dx.

Using my Butterfly Method we first look at the first formula on our
list for formulas: The Power Rule. We can solve the problem by first
solving the corresponding indefinite integral :∫

x
√
x2 + 3 dx

=
1
2

∫
(x2 + 3)1/2 2x dx /

{
u = x2 + 3

du = 2x dx

=
1
2

∫
u1/2 du / substitution

=
1
2

2
3
u3/2 + C

=
1
3

(x2 + 3)3/2 + C / resubstitute
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Now, having used standard techniques to compute the indefinite in-
tegral, we can then evaluate the definite integral :∫ 1

0
x
√
x2 + 3 dx =

1
3

(x2 + 3)3/2
∣∣∣1
0

/ EBLO Trick

=
1
3

(43/2 − 33/2)

=
1
3

(8− 3
√

3).

This is one style for solving integrals that involve an auxiliary substi-
tution to solve. An alternate procedure is discussed next.

Example 9.4.
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9.5. You should have let u = 2x, du = 2 dx, and used the trig
formula (2) to obtain∫ π/2

0
sin(2x) dx =

1
2

∫ π/2

0
sin(2x) 2 dx

= −1
2

cos(2x)|π/20

= −1
2

(cos(π)− cos(0)) / EBLO Tricks

= −1
2

(−1− 1)

= 1.

Here, I have combined the calculation of the indefinite integral into
the same line of development as the definite integral. I set up the
substitution, but did not actually substitute; had I done so, I would
have had a new variable of integration u, but my limits of integration
are for the x variable — that’s no good. Example 9.5.
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9.6. This is the example seen earlier. We check whether we get the
same answer. The integral is∫ 1

0
x
√
x2 + 3 dx

We apply substitution: Let u = x2 + 3, du = 2x dx, then∫ 1

0
x
√
x2 + 3 dx =

1
2

∫ 1

0
(x2 + 3)1/2 2x dx

Rearrange the integrand and prepare it for the power rule, with the
designated u and the calculated value of du, we inserted our fudge
factor. We are ready for our substitution.∫ 1

0
x
√
x2 + 3 dx =

1
2

∫ 1

0
(x2 + 3)1/2 2x dx

=
1
2

∫ 4

3
u1/2 du / substitute!
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Now where did the new limits of integration come from? They come
from the substitution formula, of course. There is the reasoning for
computing these limits:

Calculation of New Lower Limit : The substitution is u = x2+3 (N.B.:
this is the u=g(x) function.) We say, when x is at its lower limit, what
is the value of u? The lower limit of x is x = 0. When x = 0, that is
the corresponding value of u? It would be u = 02 + 3 = 3. (N.B.: this
is g(a).) Or, more simply,

x = 0 and u = x2 + 3 =⇒ u = 3.

This is the new lower limit.

Calculation of the New Upper Limit : When x is at its upper limit,
what is the corresponding value of u?

x = 1 and u = x2 + 3 =⇒ u = 4.

This is the new upper limit.
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Let’s finish up our calculation and call it quits.∫ 1

0
x
√
x2 + 3 dx =

1
2

∫ 4

3
u1/2 du

=
1
2

2
3
u3/2

∣∣∣4
3

=
1
3

(43/2 − 33/2)

=
1
3

(8− 3
√

3)

The solution was rather long, but actually not. Just the last set of
equations in the above display represent the entire solution to this
definite integral. Example 9.6.
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9.7. This integral, ∫ 3

−2
(1− 4x)−5 dx

can be solved by the Power Rule. For the power rule formula, the u is
the formula is the base of the power function. This forces us to say:
Let

u = 1− 4x
and,

du = −4 dx

Change of Limit Calculations:

Lower Limit : x = −2 and u = 1− 4x =⇒ u = 9
Upper Limit : x = 3 and u = 1− 4x =⇒ u = −11
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Calculation of the Integral :∫ 3

−2
(1− 4x)−5 dx = −1

4

∫ 3

−2
(1− 4x)−5 (−4) dx

= −1
4

∫ −11

9
u−5 du

= −1
4
u−4

−4

∣∣∣∣−11

9

= − 1
16

u−4
∣∣−11
9

= − 1
16

((−11)−4 − 9−4) (S-7)

=
1
16

(
1

114 −
1
94

)
.

The second factor in line (S-7) is negative, standard algebraic methods
dictate to reverse the order of subtraction, and pre-fixing a negative
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sign; that is exactly what I did in the next line — the negative com-
bined with a negative sign already there, to obtain a positive sign,
which, of course, is not written. Example 9.7.
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9.8. Here’s what your eyes and mind should observe:∫ 2

−2
x2 dx.

Observation 1: We are integrating over a symmetric interval.
Observation 2: The function x2 is even: (−x)2 = x2.

Let’s solve the integral two ways. Not using symmetry, and then taking
advantage of symmetry.
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Don’t Use the Symmetry :∫ 2

−2
x2 dx =

1
3
x3
∣∣∣∣2
−2

=
1
3

(23 − (−2)3)

=
1
3

(8− (−8)) (S-8)

=
1
3

(8 + 8)

=
16
3
.

Notice that there was some tricky evaluations in line (S-8), not diffi-
cult, but for many people, this kind of “double negative” evaluation
causes difficulties, confusion, and disorientation.
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Use Symmetry : ∫ 2

−2
x2 dx = 2

∫ 2

0
x2 dx / (10)

= 2
1
3
x3
∣∣∣∣2
0

= 2
1
3

(8− 0) (S-9)

=
16
3
.

The tricky evaluation of the first solution is gone. The line (S-9) now
is very simple to evaluate; the chance of making a computation error
is reduced quite a bit. Example 9.8.
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9.9. We are integrating an odd function over a symmetric interval
of integration; therefore, by Theorem 9.2, we relatively almost instan-
taneously deduce that ∫ 1

−1
x3 dx = 0

Example 9.9.
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9.10. Wow! The given integral is∫ 100

−100

sin(x)√
x8 + x4 + x2 + 1

dx.

This is nothing more then the integral of an odd function over a
symmetric interval. Therefore,∫ 100

−100

sin(x)√
x8 + x4 + x2 + 1

dx = 0.

That was simple.
Example Notes: The “difficult part” of this problem is arguing that
the integrand is odd. No problem. The numerator is sin(x), a notorious
odd function. The denominator, is an even function. It is well-known
that the ratio of an odd function and an even function results in an
odd function! That’s all.

Example 9.10.



9.11. Background Thinking. The integrand f(x) = x6 − x3 is
an even function minus an odd function. We are integrating over a
symmetric interval.

Evaluation: ∫ 1

−1
x6 − x3 dx =

∫ 1

−1
x6 dx−

∫ 1

−1
x3 dx

= 2
∫ 1

0
x6 dx− 0

= 2
1
7

=
2
7

Example Notes: Here, we separated to even function from the odd
function using a technique, then utilized any symmetric properties on
each integral.

Example 9.11.
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Outline of the genesis of area.

When first you met area it was, perhaps, when you were studying rect-
angles. Then, whether you were aware of it or not, area of a rectangle
having base b and height h was defined to be

Arect = bh.

Intuitive Notion of Area. Let’s make a distinction between area
that has been defined for a particular geometric shape, the rectangle,
and the intuitive notion of area. The intuitive notion of area was that
all geometric shapes have this area quantity, and that area had certain
properties—properties consistent with the intuitive notion of area.
Properties of Area. In order to be consistent with the intuitive notion
of area, the defined area must have certain properties.

(Nonnegativity of Area.) Area is a nonnegative quantity.
(Additively of Area) If we have a region in the plane (i.e. some

geometric shape) having area A, and we subdivide this region into two
subregions, each having respective areas A1 and A2, then A = A1+A2.
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(Monotonicity of Areas.) Suppose we have two regions in the
plane, R1 and R2, such that R1 ⊆ R2. Then the area of R1 is less
than or equal to the area of R2.

(Congruency and Area.) Congruent regions have equal area.

Armed with the definition of area for a rectangle and the intuitive
properties of area, it is possible to deduce the notion of area for a great
variety of geometric shapes: triangles, parallelograms, trapezoids, and
so on.

The circle was another two-dimensional shape that has an area. From
Euclid we know that the area of a circle of radius r is given by

A = πr2 Area of a circle.

By seeing these common shapes, calculating their area by their formu-
las, all the while keeping in mind the properties of area, we come to
“know” the notion of area. However, that doesn’t change the fact that
the notion of area is still an undefined quantity for a large number of
shapes. Important Point
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Define/Calculate the area under the graph of f .

Because we are attempting to extend the notion of area to regions
of (somewhat) arbitrary shape, our task is actually to define what
we mean by area. This definition must be consistent with previous
notions of area however. For example, if the region under the graph
of f happens to be a rectangle or triangle, our new definition of area
should reduce to that of the area of a rectangle or triangle.

Defining area in a new situation is nice, but we also want to develop
methods of calculating this area.

For these reasons, the phrase ‘define/calculate’ is used.
Important Point
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Definition. Assume the notation of the constructive definition of the
definite integral. Let L be a number. We say that

lim
‖P‖→0

n∑
i=1

f(x∗i ) ∆xi = L

provided it is true that for any ε > 0, there exists a number δ > 0
such that ∣∣∣∣∣

n∑
i=1

f(x∗i ) ∆xi − L
∣∣∣∣∣ < ε

whenever P is a partition of the interval [ a, b ] whose norm ‖P‖ < δ
and any choice of intermediate points x∗i .
Definition Notes: The above is remarkably similar to Definition 8.1.
The twist here is that this definition reflects the need to have the
limit, L, independent of the choices for the intermediate points x∗i .

Consequently, this limit is a true limit in that it has all the limit
properties studied in the article on Limits.

Important Point
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Algorithm for expanding the symbol
∑n
i=1 ai.

Problem: Expand
n∑
i=1

ai.

1. Put i equal to its initial value: i = 1. Evaluate the expression ai
for i = 1 to obtain a1. Include this term in sum: write

n∑
i=1

ai = a1+

2. Increment the value of the index to i = 2. Evaluate the expres-
sion ai for i = 2 to obtain a2. Include this term in the sum:
write

n∑
i=1

ai = a1 + a2+

3. Increment the value of the index to i = 3. Evaluate the expres-
sion ai for i = 3 to obtain a3. Include this term in the sum:
write
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n∑
i=1

ai = a1 + a2 + a3+

4. Increment the value of the index to i = 4. Evaluate the expres-
sion ai for i = 4 to obtain a4. Include this term in the sum:
write

n∑
i=1

ai = a1 + a2 + a3 + a4+

...
...

...
...

...
...

...
...

...
n. Increment the value of the index to i = n. Evaluate the expres-

sion ai for i = n to obtain an. Add this term into the sum:
write

n∑
i=1

ai = a1 + a2 + a3 + a4 + · · ·+ an

5. Finished.
Important Point
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Some Common Summation Formulas. Here are some famous
summation formula that we will be using in this section.

1.
n∑
i=1

c = c+ c+ c+ c+ · · ·+ c = nc

2.
n∑
i=1

i = 1 + 2 + 3 + 4 + · · ·+ n =
n(n+ 1)

2

3.
n∑
i=1

i2 = 12 + 22 + 32 + 42 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

4.
n∑
i=1

i3 = 13 + 23 + 33 + 43 + · · ·+ n3 =
[
n(n+ 1)

2

]2

Verbalizations. Formula (1) can be read as the sum of the same num-
ber, c, n times. Formula (2) is the sum of the first n integers. Formula
(3) is the sum of the squares of the first n integers. And formula (4)
is the sum of the cubes of the first n integers. Important Point
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Technical Definition.

Definition. Assume the notation of the constructive definition of the
definite integral. Let L be a number. We say that

lim
n→+∞

n∑
i=1

f(x∗i ) ∆x = L

provided it is true that for any ε > 0, there exists a number M > 0
such that whenever the interval [ a, b ] is partitioned into n subinter-
vals, n ≥M , of equal length ∆x = (b− a)/n, it must be true that∣∣∣∣∣

n∑
i=1

f(x∗i ) ∆x− L
∣∣∣∣∣ < ε

no matter the choice of the intermediate points x∗i .

Definition Notes: Roughly speaking, L is the limit (hence the value
of the definite integral) if L can be approximated by Riemann sums
to any preselected degree of accuracy (that’s the ε-value) by parti-
tioning up the interval [ a, b ] into a large enough number of intervals
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(that’s the role of the M). The precision of the approximation does
not depend on the intermediate points x∗i , rather it depends only on
the whether you have subdivided the interval into a sufficient number
of subintervals (that’s the M again). (That should make it clear!)

This limit formulation makes it much easier to compute an in-
tegral.

Important Point
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Have you ever cut out two paper strips of exactly the same width?

Actually, in some developments seen in Calculus II and Calculus III,
it is inconvenient to require the subintervals to be of equal length—
and actually makes it more difficult to develop the application.

Important Point
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There is more area above the x-axis than below the x-axis.
Important Point
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There is more area below the x-axis than above the x-axis.
Important Point
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There is equal amounts of area below the x-axis as above the x-axis.
Important Point
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Solution to in-line quiz.

The distributive law states, for any a, b, c ∈ R,

a(b+ c) = ab+ ac.

Using this formula from left to right, we say that we distribute the a
through the sum (or, multiply through by a). Using the formula from
right to left, we often say that we factor out the common factor of a.

In the step above, we have essentially used the distributive law from
right to left. We have factored out the common factor of c, in the
notation of the problem. Important Point
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Solution to in-line quiz.

The associative law states, for any a, b, c ∈ R,

(a+ b) + c = a+ (b+ c).

This relation is important because we can only add two numbers at a
time. In the case we want to add three numbers together, we can do
so by adding the first two together, then add that result to the third.
The associative law then states that sequence of operations yields the
same result as taking the first number, and adding it to the sum of
the second two numbers.

The commutative law states that for any a, b ∈ R,

a+ b = b+ a.

This law states that we can add two numbers together in any order.
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In the above problem we have used a combination of the associative
law and commutative laws to justify the equality. Here are some detail
for the simple case of n = 2.

(a1 + b1) + (a2 + b2) = a1 + (b1 + (a2 + b2)) / associative law

= a1 + ((b1 + a2) + b2) / associative law

= a1 + ((a2 + b1) + b2) / commutative law

= a1 + (a2 + (b1 + b2)) / associative law

= (a1 + a2) + (b1 + b2) / associative law

Now you see why it did the case of n = 2. That’s more microminiture
algebraic then you’ve see in a long time. However, such “low level”
knowledge of our arithmetic system gives us a better overall under-
standing of our mathematical universe. DPS Important Point
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We proceed as follows:

10∑
k=5

k3 =
10∑
k=1

k3 −
4∑
k=1

k3
/ from (18)

=
[

10(11)
2

]2

−
[

4(5)
2

]2

/ Sum Formula (4)

= [5(11)]2 − [2(5)]2

= 2,925

Important Point
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This will work:
n+3∑
i=3

2i−3. Expand it out to verify. Important Point
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