Show all your work.

1. Evaluate the following limits:
 a. (3 pts) \(\lim_{{x \to 3}} \left(\frac{x - 2}{1 + \sqrt{x + 6}} \right) \)
 b. (2 pts) \(\lim_{{x \to x}} (x) \)

 c. (7 pts) \(\lim_{{x \to 2}} \left(\frac{4 - \sqrt{11x - 6}}{x - 2} \right) \)
 d. (6 pts) \(\lim_{{x \to -2}} \left(\frac{x^2 - x - 6}{2x^2 + 3x - 2} \right) \)

 e. (2 pts) \(\lim_{{x \to -3}} \left\lfloor \frac{x - 4}{x^2(x + 3)} \right\rfloor \)
 f. (2 pts) \(\lim_{{x \to 4}} \left[\frac{x - 4}{|x - 4|} \right] \)
2. If \(f(x) = \begin{cases}
5 & \text{if } x < -2 \\
\chi^2 + 1 & \text{if } -2 \leq x < 1 \\
2\chi^2 + 3 & \text{if } x \geq 1
\end{cases} \) answer the following questions:

a. (4 pts) Is \(f \) continuous at \(x = -2 \)? Explain why or why not using the definition of continuous.

b. (4 pts) Is \(f \) continuous at \(x = 1 \)? Explain why or why not using the definition of continuous.

3. (9 pts) Use the definition of derivative to find \(f'(x) \) if \(f(x) = \sqrt{2x + 1} \)

4. (4 pts) The displacement (in meters) of a particle moving in a straight line is given by \(s(t) = t^2 - 5t - 1 \) where \(t \) is measured in seconds. Find the instantaneous velocity when \(t = 4 \) seconds.
5. Refer to the graph of \(f(x) \) to answer the following questions:

a. (1 pt) \(\lim_{x \to 2^-} f(x) = \) __________

b. (1 pt) \(\lim_{x \to 2^+} f(x) = \) __________

c. (1 pt) \(\lim_{x \to 2^-} f(x) = \) __________

d. (1 pt) \(\lim_{x \to 2} f(x) = \) __________

e. (1 pt) \(\lim_{x \to 4^-} f(x) = \) __________

f. (1 pt) \(\lim_{x \to 6^-} f(x) = \) __________

g. (6 pts) List the values of \(x \) at which \(f \) is discontinuous. For each of these values state the condition(s) from the definition of continuity that is (are) violated.

h. (8 pts) State, with reasons, the values of \(x \) at which \(f \) is not differentiable.
6. (10 pts) The graph of the function $f(x)$ is given below. Use it to sketch the graph of $f'(x)$.

[Diagram of a sinusoidal function with a tangent line at various points indicating the slope]
7. Find the derivative of the following functions: \textbf{(DO NOT simplify your answer.)}

 a. \((7 \text{ pts})\) \(f(x) = 5x + \frac{7}{x^2} + 3\sqrt{x^2 + 4x^2}\)

 b. \((10 \text{ pts})\) \(f(x) = (x^7 + 3x^5 - 2x^4 + 8x^{1/5})(2x^{1/2} - 3x^{-2} + 7x^{1/2})\)

8. \((10 \text{ pts})\) Find and \textbf{SIMP L I F Y} the derivative of:

 \[f(x) = \frac{x^2}{x^2 + 2x + 1} \]

 \textbf{AFTER} differentiation you may use \(x^2 + 2x + 1 = (x + 1)^2\)