1. Let \(n \) be a positive integer, let \(F \) be a field, and suppose \(\alpha \in F \). For \(i, j \) with \(1 \leq i, j \leq n \), define the matrix \(X_{ij}(\alpha) \) to be the matrix with \(x_{kk} = 1 \) for all \(k, 1 \leq k \leq n \), \(x_{ij} = \alpha \), and all other entries are zero. Prove that \(X_{ij}(\alpha) \) has determinant one.

2. If \(n \) is a positive integer and \(F \) is a field, show that \(\text{SL}(n, F) \) is a normal subgroup of \(\text{GL}(n, F) \). Also, if \(F \) has \(q \) elements, show that
\[
|\text{SL}(n, F)| = q^{n^2-n} \prod_{i=2}^{n} (q^i - 1).
\]

3. Prove that the center of \(\text{SL}(n, F) \) is the set of all diagonal matrices \(cI \) such that \(c^n = 1 \) in \(F \). (This is just like we did in class with \(\text{GL}(n, F) \).)

4. Prove that \(\text{PSL}(2, 3) \) is isomorphic to \(A_4 \) as follows:
 (a) Show that \(\text{SL}(2, 3) \) has order 24 and has 4 Sylow 3-subgroups (You can probably do this by counting elements of order 3).
 (b) Show that if \(\text{SL}(2, 3) \) acts by conjugation on the set of Sylow 3-subgroups, then the kernel of this action is \(\{I, -I\} = Z(\text{SL}(2, 3)) \). Therefore there is an isomorphism of \(\text{SL}(2, 3) \) to a subgroup of \(S_4 \).
 (c) Show that \(A_4 \) is the only subgroup of order 12 in \(S_4 \), and thus \(A_4 \) must be the subgroup in part (b).

5. Let \(X_{i,j}(\alpha) \) be a transvection. Prove:
 (a) \(X_{i,j}(\alpha) \) is in the Borel subgroup \(B \) if and only if \(i < j \).
 (b) \(X_{i,j}(\alpha)X_{j,i}(\beta) = X_{i,j}(\alpha + \beta) \), and thus the set \(\{X_{i,j}(\alpha)|\alpha \in F\} \) forms a subgroup of \(\text{SL}(n, F) \) isomorphic to \(F \).
 (c) Suppose \(k \neq j \). Then \(X_{i,j}(\alpha)e_k = e_k \), where \(e_k \) is the \(k \)th standard column vector (i.e. \(e_k \) has 1 in the \(k \)th row and zero elsewhere).
 (d) \(X_{i,j}(\alpha)e_j = e_j + \alpha e_i \).
 (e) If \(g \in \text{GL}(n, F) \), then the \(i \)th row of \(X_{i,j}(\alpha)g \) is the sum of the \(i \)th row of \(g \) and \(\alpha \) times the \(j \)th row of \(g \). Moreover, the \(k \)th row (if \(k \neq j \)) of \(X_{i,j}(\alpha)g \) is the \(k \)th row of \(g \).

6. Let \(M_{i,j} = X_{j,i}(1)X_{i,j}(-1)X_{j,i}(1) \). Show that \(M_{i,j}e_i = e_j, M_{i,j}e_j = -e_i, \) and \(M_{i,j}e_k = e_k \) for \(k \neq i, j \), where here the \(e_i \) are again the standard column basis vectors.

7. Suppose \(i, j, \) and \(k \) are distinct. Show that \([X_{i,j}(\alpha), X_{j,k}(\beta)] = X_{i,k}(\alpha \beta) \).
GAP problem

Problem Use GAP to make a conjecture about the size of the center of $SL(n,q)$, where q is a power of a prime.