Inscribed Angles

Key Words: Circles, Inscribed Angles, Arcs

Summary: Given an inscribed angle in a circle, the student will discover the relationship between an inscribed angle and its intercepted arc.

Existing Knowledge: Student has knowledge of central angles and the measurement of its intercepted arc. Also, we accept that the student has at least a basic knowledge of the working properties of Cabri II.

NCTM Standards: Analyze characteristics and properties of two- and three-dimensional shapes and develop mathematical arguments about geometric relationships.

Learning Objective: To recognize and find measures of inscribed angles.

Materials Needed: Computers with Cabri Geometry II, and lab worksheet.

Procedures: 1. Group students in pairs 2. Proceed with lab worksheet

Authors: Brenda Walko and Bill Schroedel
Lab: Inscribed Angles

Team Members’ Names: ________________________________ Date________________

File Name:__

Goal(s): To find the measure of an inscribed angle and to make a conjecture.

Procedures:

1. Draw a circle and label the center O. (Use the Circle Tool)
2. Locate a point A on circle O.
3. Draw segment \overline{OA}. (Use the Segment Tool)
4. Draw a line perpendicular to segment \overline{OA} that passes through point O, and label one of the points of intersection with the circle, B. (Use the perpendicular line Tool)
5. Create segment \overline{OB} and hide the perpendicular line that you created in step 4. (Use the Hide/Show Cabri tool)

6. Name the measure of $\angle AOB$. _________(Use Angle Measure Tool)
7. Name the intercepted arc of $\angle AOB$. ______________
8. What is the degree measure of arc \overline{AB}? _____________ (Label the arc)
9. Locate a point on circle O not in arc \overline{AB}, and label it C.
10. Draw segments \overline{AC} and \overline{BC}. Thicken or color the segments to create a different look from segments \overline{OB} and \overline{OA}.

(Use Thicken or Color Tool)

11. Measure $\angle ACB$ using the Cabri angle measure tool.

12. What is the intercepted arc of $\angle ACB$? _____________

13. What do you notice about the measure of $\angle ACB$ in relation to its intercepted arc \overline{AB}?

14. Grab point C and move it around the circumference of the circle. What happened to the angle measure?

15. Make a conjecture.

16. Let’s test your conjecture. Bisect $\angle AOB$. Label the point of intersection with the circle as D. (Use Angle Bisector tool)

17. Create segment \overline{OD} and hide the line \overline{OD}. (Use Segment Tool and Hide/Show Tool)
18. Measure $\angle BOD$ and label arc \overarc{BD} with its degree measure.
(Use Angle Measure and Label Tools)

19. Locate a point “E” on circle O not on arc \overarc{AB}.

20. Draw segments \overline{BE} and \overline{DE}. Choose a dashed line pattern for these segments in order to create a different look from the other.
(Use Dotted Tool)

21. If your conjecture is correct, what is the measure of $\angle BED$?

22. Now measure $\angle BED$ using the Cabri angle measure tool in order to confirm your conjecture.

23. Now try these:
Extension: Tallmadge Circle Traffic Problem

Eight streets intersect at Tallmadge Circle. Traffic flows in a counterclockwise direction. What arc degree measure describes leaving route 91 south to enter route 261 northeast? Streets that appear to be 90 degrees and 45 degrees are such.
Solutions:

6. 90 degrees

7. Arc \widehat{AB}

8. 90 degrees

12. Arc \widehat{AB}

13. The angle measure is half the measure of the intercepted arc.

14. The angle measure remains the same.

15. The measure of an inscribed angle is equal to one-half the measure of the intercepted arc.

21. 22.5 degrees

23. $X = 80$ degrees, $X = 44$ degrees

Tallmadge Circle Problem: 135 degrees