END BEHAVIOR OF RATIONAL FUNCTIONS

Assumed prior knowledge:

a) TI-83 techniques
 - function graphing and window management
 - table generation

b) Algebra concepts or notation
 - Division of polynomials to produce a polynomial quotient
 - Understanding of “as X approaches a value, the corresponding Y approaches a value.

1. Graph: \(Y_1 = \frac{1}{X} \)

2. Graph: \(Y_2 = \frac{1}{X^2} \)

3. Inspect the graph of \(Y_1 \):

 A) What value does Y seem to approach as the X-values become very large?

 B) What value does Y seem to approach as the X-values become very small?

4. Inspect the graph of \(Y_2 \):
A) What value does Y seem to approach as the X-values become very large?

B) What value does Y seem to approach as the X-values become very small?

5. Using the “TABLE” capability of your calculator, create a table of X, Y₁ and Y₂ values for very large values for X.

6. Using the “TABLE” capability of your calculator, create a table of X, Y₁ and Y₂ values for very small values for X.

7. Using your knowledge for dividing polynomial functions, what is the polynomial quotient associated with:

 A) Y₁ : __________________

 B) Y₂ : __________________

8. Graph: \(Y₃ = \frac{X^2 + 1}{X} \)

9. Inspect the graph of Y₃:

 A) What value does Y seem to approach as the X-values become very large?

 B) What value does Y seem to approach as the X-values become very small?

10. Using the “TABLE” capability of your calculator, create a table of X and Y₃ values for very large and very small values for X.
11. Using your knowledge for dividing polynomial functions, what is the polynomial quotient associated with:

A) \(Y_3 \) ? : _________________

12. Graph the quotient function from \(Y_3 \) on the same graph as \(Y_3 \).

13. Graph: \(Y_4 = \frac{2X^2 + 3X - 2}{X^2 - 5} \)

14. Inspect the graph of \(Y_4 \):

A) What value does \(Y \) seem to approach as the \(X \)-values become very large? __

B) What value does \(Y \) seem to approach as the \(X \)-values become very small? __

15. Using the “TABLE” capability of your calculator, create a table of \(X \) and \(Y_4 \) values for very large and very small values for \(X \).

16. Using your knowledge for dividing polynomial functions, what is the polynomial quotient associated with:

A) \(Y_4 \) ? : _________________

17. Graph the quotient function from \(Y_4 \) on the same graph as \(Y_4 \).

18. Compare the graph, table and polynomial quotient for \(Y_1, Y_2, Y_3 \) and \(Y_4 \). Is there a connection among these results for very large and very small values of \(X \)?

__